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Abstract

Thermal stresses around a crack in the interfacial layer between two dissimilar elastic half-planes are solved. The

surfaces of the crack are assumed to be insulated. The material constants of the interfacial layer are assumed to vary

continuously from those of the upper half-plane to those of the lower half-plane. Uniform heat flows perpendicular the

crack. Stress intensity factors are calculated numerically for several thicknesses of the interfacial layer.
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1. Introduction

Ceramic materials have good anti-oxidation characteristics at high temperatures and are good thermal
insulators. Coating metal components with ceramics is one way of increasing the application range of metal

parts. If a diffusion method is used to join a ceramic and a metal, a thin diffusion layer appears between

ceramic and the metal. The diffusion layer is relatively weak and inclined to fracture. It is therefore necessary

to solve the stress intensity factors around a crack in the interfacial zone in order to avoid catastrophic

failure in composite materials.

Delale and Erdogan (1988) considered that the cracked layer is nonhomogeneous and its material

constants vary continuously within a range from those of the upper half-plane to those of the lower half-

plane. The two-dimensional stress and displacement fields are solved for internal pressure on the crack
surfaces. Later, axisymmetric solutions have been determined for a penny-shaped crack in an interfacial

nonhomogeneous layer between two dissimilar elastic half-spaces by Ozturk and Erdogan (1995, 1996).

Xue-Li and Duo (1996) provided the stresses around a cylindrical crack in a nonhomogeneous layer

between an infinite elastic medium and a circular elastic cylinder under Mode III torsional loading.

As for Mode I loading, axisymmetric stresses were solved for a cylindrical crack in an interfacial

cylindrical layer between a circular elastic cylinder and an infinite elastic medium (Itou and Shima, 1999).
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The material constants vary continuously from those of the cylinder to those of the infinite medium. Rather

than apply the nonhomogeneous theory of elasticity to solve the problem, the nonhomogeneous layer is

divided into several homogeneous layers each having different elastic constants. The method has also been

applied to obtain dynamic stresses around a crack in a nonhomogeneous interfacial layer between two
dissimilar elastic half-planes (Itou, 2001a). Dynamic stresses for a penny-shaped crack in a functionally

graded material (FGM) interlayer between two dissimilar homogeneous half-spaces are solved under Mode

III torsional loading (Li and Weng, 2002).

In the present paper, thermal stresses are solved for a crack in the interfacial layer between two dissimilar

elastic half-planes. Heat flows perpendicular to the crack and is interrupted by the heat insulating surfaces

of the crack. The material constants in the layer vary continuously from those of the upper half-plane to

those of the lower half-plane. In order to solve the problem, the same method employed in Itou and Shima

(1999) and Itou (2001a) is applied. Namely, the nonhomogeneous layer is divided into several homogeneous
layers that have different elastic constants. The solution is obtained using expressions in the theory of

orthotropic elasticity. Numerical calculations are carried out only for composite materials made of iso-

tropic materials. However, whenever solutions are needed for composite materials made of orthotropic

materials, these can be calculated numerically.

Thermal stresses were solved for an infinite orthotropic plate weakened by a crack by Tsai (1984). The

corresponding problem for an infinite orthotropic cracked layer was studied by Itou (2000). Recently, the

author provided thermal stresses around two parallel cracks in an infinite orthotropic plate (Itou, 2001b).

In the present solution, the temperature field is determined by reducing the boundary conditions to a set
of dual integral equations using the Fourier transform technique. If a difference in the crack surface

temperature is expanded in a series of functions that are zero outside the crack, the continuous temperature

condition outside the crack is satisfied. Unknown coefficients in the series are then determined using the

Schmidt method (Morse and Feshbach, 1958) so as to satisfy the condition inside the crack. Next, the

mixed boundary value conditions related to displacements and stresses are reduced to two sets of dual

integral equations. To solve the equations, differences in displacements at the crack are also expanded in a

series of functions that are zero outside the crack. The Schmidt method (Yau, 1967) is once more used to

obtain the unknown coefficients in the series.
As the number of divisions in the interfacial layer increases, the solution approaches that for a non-

homogeneous interfacial layer. Using this approach, the stress intensity factors are computed numerically

for composite materials made of ceramic and steel.
2. Fundamental equation

Consider a crack located on the x-axis from �a to þa with respect to the rectangular co-ordinates (x; y)
as shown in Fig. 1. The interfacial layer (A) is denoted by (�HB 6 y6HC). The upper half-plane and the

lower half-plane are labeled half-plane (C) and half-plane (B), respectively. The interfacial layer (A) is

further divided into an upper interfacial layer (A-1) denoted by ð06 y6HCÞ and a lower interfacial layer

(A-2) denoted by (�HB 6 y6 0Þ. If a state of plane stress is assumed, the stresses can be expressed by
sxx ¼ Q11exx þ Q12eyy � b1T ; syy ¼ Q12exx þ Q22eyy � b2T ; sxy ¼ Q66cxy ð1Þ
with
Q11 ¼ Exx=ð1� myxmxyÞ; Q22 ¼ Eyy=ð1� mxymyxÞ
Q12 ¼ Eyymxy=ð1� myxmxyÞ ¼ Exxmyx=ð1� mxymyxÞ
Q66 ¼ Gxy ; b1 ¼ Q12ayy þ Q11axx; b2 ¼ Q12axx þ Q22ayy

ð2Þ



Fig. 1. Geometry and co-ordinate system.
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where the strain–displacement relations are as follows:
exx ¼ ou=ox; eyy ¼ ov=oy; cxy ¼ ou=oy þ ov=ox ð3Þ
and Exx, Eyy are the Young�s moduli, Gxy is the shear modulus, mxy , myx are the Poisson ratios, and axx, ayy are
the coefficients of linear thermal expansion. In Eq. (1), the temperature T satisfies the following partial

differential equation
o2T=ox2 þ k2 o2T=oy2 ¼ 0 ð4Þ

with
k2 ¼ ky=kx ð5Þ

where ky , kx are the thermal conductivities.

The equations of equilibrium can be written as
Q11o
2u=ox2 þ Q66o

2u=oy2 þ Lo2v=oxoy � b1oT=ox ¼ 0

Q66o
2v=ox2 þ Q66o

2v=oy2 þ Lo2u=oxoy � b2oT=oy ¼ 0
ð6Þ
with
L ¼ Q12 þ Q66: ð7Þ
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The material property Exx probably varies continuously in the interfacial layer with respect to y, as
shown in Fig. 2. Other constants ðGxy ; mxy ; myx; axx; ayy ; ky ; kxÞ are assumed to vary in a similar manner

according to the curve describing Exx. The Young�s modulus Eyy is expressed by the relation
Eyy ¼ ðmyx=mxyÞExx: ð8Þ

Consider the case in which the heat flux q flows in the direction of the negative y-axis. By restricting our

concern to only the stress intensity factors, it is possible to solve the problem for the following boundary

conditions
kyA1oTA1=oy ¼ kyA2oTA2=oy for y ¼ 0; jxj < 1 ð9Þ

oTA1=oy ¼ �q=kyA1 ¼ �t for y ¼ 0; jxj < a ð10Þ

TA1 ¼ TA2 for y ¼ 0; a < jxj ð11Þ

kyCoTC=oy ¼ kyA1oTA1=oy; TC ¼ TA1 for y ¼ HC; jxj < 1 ð12Þ

kyA2oTA2=oy ¼ kyBoTB=oy; TA2 ¼ TB for y ¼ �HB; jxj < 1 ð13Þ

syyA1 ¼ syyA2; sxyA1 ¼ sxyA2 for y ¼ 0; jxj < 1 ð14Þ
Fig. 2. Young�s modulus Exx as a function of y.
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syyA1 ¼ 0; sxyA1 ¼ 0 for y ¼ 0; jxj < a ð15Þ

uA1 ¼ uA2; vA1 ¼ vA2 for y ¼ 0; a < jxj ð16Þ

syyC ¼ syyA1; sxyC ¼ sxyA1; uC ¼ uA1; vC ¼ vA1 for y ¼ HC; jxj < 1 ð17Þ

syyA2 ¼ syyB; sxyA2 ¼ sxyB; uA2 ¼ uB; vA2 ¼ vB for y ¼ �HB; jxj < 1 ð18Þ
where t is a constant and the variables with subscripts A1, A2, B, C are those for the layers (A-1), (A-2), the

upper half-plane (C) and the lower half-plane (B), respectively. It is assumed that the crack faces do not

come into contact and also that the crack surfaces are thermally insulated.
3. Division of the interfacial layer

In order to solve the problem of thermal stresses in the nonhomogeneous layer, the interfacial layer (A)

in Fig. 1 is first replaced by several homogeneous layers. The number of homogeneous layers, m, must be

odd. In the present example, m is set to 3. It should be noted that if m ¼ 3, the interfacial layer (A) is divided

into four layers because the cracked layer denoted by (�H2 6 y6H1) separates into two parts. Namely, the

interfacial layer (A) is divided into layer (1) occupying ð06 y6H1Þ, layer (3) occupying (H1 6 y6H3), layer

(2) occupying (�H2 6 y6 0) and layer (4) occupying (�H4 6 y6 � H2), as shown in Fig. 3. For conve-
nience, the upper half-plane (C) and the lower half-plane (B) are denoted by (5) and (6), respectively.
Fig. 3. Nonhomogeneous interfacial layer replaced by three homogeneous layers.
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In the interfacial layer (A), all material properties except for Eyy are assumed to vary linearly with respect

to y. For example, ExxA is expressed as
ExxA ¼ ExxB þ ðExxC � ExxBÞðy þ HBÞ=ðHC þ HBÞ: ð19Þ

The material properties ðGxy ; mxy ; myx; axx; ayy ; ky ; kxÞ are also given by similar forms like in Eq. (19). Of

course, Eyy is expressed by Eq. (8). For m ¼ 3 the Young�s moduli of the layers (1)–(4) take the average

values Exx1, Exx2, Exx3, Exx4 as seen in Fig. 4 instead of ExxA denoted by Eq. (19). The same applies to the other

material properties.

For m ¼ 3, the boundary conditions (9)–(18) can be replaced by the following equations:
ky1oT1=oy ¼ ky2 oT2=oy for y ¼ 0; jxj < 1 ð20Þ

oT1=oy ¼ �t for y ¼ 0; jxj < a ð21Þ

T1 ¼ T2 for y ¼ 0; a < jxj ð22Þ

ky3oT3=oy ¼ ky1oT1=oy; T3 ¼ T1 for y ¼ H1; jxj < 1 ð23Þ

ky5oT5=oy ¼ ky3oT3=oy; T5 ¼ T3 for y ¼ H3; jxj < 1 ð24Þ

ky2oT2=oy ¼ ky4oT4=oy; T2 ¼ T4 for y ¼ �H2; jxj < 1 ð25Þ

ky4oT4=oy ¼ ky6oT6=oy; T4 ¼ T6 for y ¼ �H4; jxj < 1 ð26Þ
Fig. 4. Young�s modulus Exx in homogeneous sublayers.
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syy1 ¼ syy2; sxy1 ¼ sxy2 for y ¼ 0; jxj < 1 ð27Þ

syy1 ¼ 0; sxy1 ¼ 0 for y ¼ 0; jxj < a ð28Þ

u1 ¼ u2; v1 ¼ v2 for y ¼ 0; a < jxj ð29Þ

syy3 ¼ syy1; sxy3 ¼ sxy1; u3 ¼ u1; v3 ¼ v1 for y ¼ H1; jxj < 1 ð30Þ

syy5 ¼ syy3; sxy5 ¼ sxy3; u5 ¼ u3; v5 ¼ v3 for y ¼ H3; jxj < 1 ð31Þ

syy2 ¼ syy4; sxy2 ¼ sxy4; u2 ¼ u4; v2 ¼ v4 for y ¼ �H2; jxj < 1 ð32Þ

syy4 ¼ syy6; sxy4 ¼ sxy6; u4 ¼ u6; v4 ¼ v6 for y ¼ �H4; jxj < 1 ð33Þ
4. Analysis

To find the solutions, we introduce the Fourier transforms
�ff ðnÞ ¼
Z 1

�1
f ðxÞ expðinxÞdx ð34Þ

f ðxÞ ¼ 1=ð2pÞ
Z 1

�1
�ff ðnÞ expð�inxÞdn ð35Þ
Applying Eq. (34) into Eq. (6) results in
Q66d
2�uu=dy2 � n2Q11�uu� iLnd�vv=dy þ ib1n�TT ¼ 0

Q22d
2�vv=dy2 � n2Q66�vv� iLnd�uu=dy � b2o�TT=oy ¼ 0

ð36Þ
Eliminating �uu or �vv from Eq. (36), the ordinary differential equations are obtained
f1d
4�uu=dy4 þ f2d

2�uu=dy2 þ f3�uu ¼ ig1d
2�TT=dy2 þ ig2�TT

f1d
4�vv=dy4 þ f2d

2�vv=dy2 þ f3�vv ¼ g3d
3�TT=dy3 þ g4d�TT=dy

ð37Þ
with
f1 ¼ Q22Q66=L; f2 ¼ �n2ðQ2
66 þ Q11Q22 � L2Þ=L; f3 ¼ Q11Q66n

4=L

g1 ¼ nðb2 � b1Q22=LÞ; g2 ¼ n3b1Q66=L; g3 ¼ Q66b2=L

g4 ¼ n2ðb1 � b2Q11=LÞ
ð38Þ
The Fourier-transformed stresses are found to be
�ssxx ¼ Q11ð�inÞ�uuþ Q12d�vv=dy � b1
�TT ; �ssyy ¼ Q12ð�inÞ�uuþ Q22d�vv=dy � b2

�TT

�ssxy ¼ Q66d�uu=dy � inQ66�vv
ð39Þ
Eq. (4) can now be expressed in the Fourier domain as
d2�TT=dy2 � ðn=kÞ2�TT ¼ 0: ð40Þ

First, the temperature field T is solved. The solutions of the Eq. (40) have the following form for each

layer i (i ¼ 1; 2; 3; 4):
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�TTi ¼ Ai sinhðjnjy=kiÞ þ Bi coshðjnjy=kiÞ ð41Þ

where Ai and Bi are unknown coefficients. For the upper half-plane (5) and lower the half-plane (6), �TT5 and
�TT6 are expressed by
�TT5 ¼ A5 expð�jnjy=k5Þ ð42Þ

�TT6 ¼ A6 expð�jnjy=k6Þ ð43Þ

where A5 and A6 are also unknown coefficients.

Using Eqs. (20),(23)–(26), the unknowns B1, A2, B2, A3, B3, A4, B4, A5, A6 can be expressed by an un-

known A1 as follows,
B1 ¼ f1ðnÞA1; A2 ¼ f2ðnÞA1; B2 ¼ f3ðnÞA1; A3 ¼ f4ðnÞA1

B3 ¼ f5ðnÞA1; A4 ¼ f6ðnÞA1; B4 ¼ f7ðnÞA1; A5 ¼ f8ðnÞA1

A6 ¼ f9ðnÞA1

ð44Þ
where the expressions of the known functions fiðnÞ (i ¼ 1; 2; . . . ; 9) are shown in Appendix A.

To satisfy Eq. (22), the temperature difference at y ¼ 0 is expanded by the series
pðT 0
1 � T 0

2 Þ ¼
X1
n¼1

cn cos½ð2n� 1Þ sin�1ðx=aÞ� for jxj < a

pðT 0
1 � T 0

2 Þ ¼ 0 for a < jxj
ð45Þ
where cn are unknown coefficients and the superscript 0 denotes the values at y ¼ 0. The Fourier transform

of Eq. (45) now becomes
p �TT 0
1

�
� �TT 0

2

�
¼

X1
n¼1

cn½ð2n� 1Þ=n�J2n�1ðanÞ ð46Þ
where JnðnÞ is the Bessel function. The left-hand side in Eq. (46) can be represented by
p �TT 0
1

�
� �TT 0

2

�
¼ b1ðnÞA1 ð47Þ
with
b1ðnÞ ¼ f1ðnÞ � f3ðnÞ: ð48Þ

From Eqs. (46) and (47), it can be seen that the unknown A1 can be replaced by cn in the following

manner
A1 ¼
X1
n¼1

cnfð2n� 1Þ=½b1ðnÞn�gJ2n�1ðanÞ: ð49Þ
Then, the Fourier transform of the temperature gradient o�TT1=oy at y ¼ 0 can be represented by
o�TT1=oy ¼
X1
n¼1

cnfð2n� 1Þjnj=½k1b1ðnÞn�gJ2n�1ðanÞ: ð50Þ
Eq. (21) is the remaining boundary condition with respect to the temperature field and it can now be

reduced to the form
X1
n¼1

cnFnðxÞ ¼ �t; for 06 x < a ð51Þ
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with
FnðxÞ ¼ ½ð2n� 1Þ=ðk1pÞ�
Z 1

0

½b2ðnÞ
�

� bL2 �J2n�1ðanÞ cosðnxÞdnþ bL2 cos½ð2n� 1Þ sin�1ðx=aÞ�=ða2 � x2Þ1=2
�

ð52Þ
and
b2ðnÞ ¼ 1=b1ðnÞ: ð53Þ

The constant bL2 in Eq. (52) can be calculated by
bL2 ¼ b2ðnLÞ ð54Þ
with nL being a large value of n. The region jxj < a in Eq. (21) can be replaced by 06 x < a in Eq. (51),

because the temperature T is now an even function with respect to x. The integrand in Eq. (52) decays

rapidly as n increases and the semi-infinite integral can be evaluated numerically using Filon�s method.

Therefore, Eq. (51) can now be solved for the coefficients cn by the Schmidt method (Morse and Feshbach,
1958). The unknown A1 is given by Eq. (49), and the entire temperature field can now be obtained.

Next, the stress field is found. It can be seen that the solutions of Eqs. (37) take the following forms for

the layers i (i ¼ 1; 2; 3; 4):
�uui ¼ Ci sinhða1iyÞ þ Di coshða1iyÞ þ Ei sinhða2iyÞ þ Fi coshða2iyÞ þ iAif2i sinhðjnjy=kiÞ=n
þ iBif2i coshðjnjy=kiÞ=n

�vvi ¼ ic1iDi sinhða1iyÞ þ ic1iCi coshða1iyÞ þ ic2iFi sinhða2iyÞ þ ic2iEi coshða2ıyÞ
þ Bif3i sinhðjnjy=kiÞ=jnj þ Aif3i coshðjnjy=kiÞ=jnj

ð55Þ
where Ci, Di, Ei, Fi are unknown coefficients and a1, a2 are the roots of the equation
f1a
4 þ f2a

2 þ f3 ¼ 0: ð56Þ

In Eq. (55), c1i, c2i, f2i, f3i are expressed by
c1i ¼ ðn2Q11i � Q66ia
2
1iÞ=ðLina1iÞ; c2i ¼ ðn2Q11i � Q66ia

2
2iÞ=ðLina2iÞ ð57Þ

f2i ¼ ½b1iðQ66ik2i � Q22iÞ þ b2iLi�k2i =f4i
f3i ¼ ½Q66ib2iki þ k3i ðb1iLi � Q11ib2iÞ�=f4i

ð58Þ
with
f4i ¼ Q66iQ22i � k2i ðQ2
66i þ Q11iQ22i � L2

i Þ þ Q11iQ66ik4i : ð59Þ
For the upper half-plane (5) and the lower half-plane (6), the solutions of Eq. (37) have the forms
�uu5 ¼ C5 expð�a15yÞ þ E5 expð�a25yÞ þ ðiA5f15=nÞ expð�jnjy=k5Þ
�vv5 ¼ �ic25C5 expð�a15yÞ � ic25E5 expð�a25yÞ � ðA5f25=jnjÞ expð�jnjy=k5Þ

ð60Þ

�uu6 ¼ C6 expða16yÞ þ E6 expða26yÞ þ ðiA6f16=nÞ expðjnjy=k6Þ
�vv6 ¼ ic26C6 expða16yÞ þ ic26E6 expða26yÞ þ ðA6f26=jnjÞ expðjnjy=k6Þ

ð61Þ
where C5, E5, C6, E6 are unknown coefficients. The roots a1i and a2i (i ¼ 5; 6) are chosen so as to have

positive real parts due to the fact that the displacements �uu5, �vv5, �uu6, �vv6 vanish as y approaches þ1 or �1.
Substituting Eqs. (55), (60), (61) into Eq. (39), stresses can be expressed in the Fourier domain. Using

Eqs. (27), (30)–(33), the unknowns.
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E1, F1, C2, D2, E2, F2, C3, D3, E3, F3, C4, D4, E4, F4, C5, E5, C6, E6 can be represented by the unknowns C1,

D1 and a known A1 as follows:
E1 ¼ C1g11 þ D1g12 þ iA1g13; F1 ¼ C1g21 þ D1g22 þ iA1g23

C2 ¼ C1g31 þ D1g32 þ iA1g33; D2 ¼ C1g41 þ D1g42 þ iA1g43

E2 ¼ C1g51 þ D1g52 þ iA1g53; F2 ¼ C1g61 þ D1g62 þ iA1g63

C3 ¼ C1g71 þ D1g72 þ iA1g73; D3 ¼ C1g81 þ D1g82 þ iA1g83

E3 ¼ C1g91 þ D1g92 þ iA1g93; F3 ¼ C1g101 þ D1g102 þ iA1g103

C4 ¼ C1g111 þ D1g112 þ iA1g113; D4 ¼ C1g121 þ D1g122 þ iA1g123

E4 ¼ C1g131 þ D1g132 þ iA1g133; F4 ¼ C1g141 þ D1g142 þ iA1g143

C5 ¼ C1g151 þ D1g152 þ iA1g153; E5 ¼ C1g161 þ D1g162 þ iA1g163

C6 ¼ C1g171 þ D1g172 þ iA1g173; E6 ¼ C1g181 þ D1g182 þ iA1g183

ð62Þ
where the expressions of the known functions g11; g12; . . . . . . ; g183, are shown in Appendix B.

The differences in the displacements at y ¼ 0 can now be expressed in the Fourier domain by the
equations
�uu01 � �uu02 ¼ C1l1 þ D1l2 þ iA1l3; �vv01 � �vv02 ¼ iC1l4 þ iD1l5 þ A1l6 ð63Þ
with
l1 ¼ g21 � g41 � g61; l2 ¼ 1þ g22 � g42 � g62
l3 ¼ g23 � g43 � g63 þ ½f1ðnÞf11 � f3ðnÞf12�=n
l4 ¼ c11 þ g11c21 � g31c12 � g51c22; l5 ¼ g12c21 � g32c12 � g52c22
l6 ¼ �g13c21 þ g33c12 þ g53c22 þ ½f21 � f2ðnÞf12�=jnj:

ð64Þ
Eq. (29) shows that the displacements are continuous outside of the crack. To satisfy these conditions,

the differences in the displacements are expanded by the series
pðu01 � u02Þ ¼
P1

n¼1 dn sin½2n sin
�1ðx=aÞ� for y ¼ 0; jxj < a

¼ 0 for y ¼ 0; a < jxj
pðv01 � v02Þ ¼

P1
n¼1 en cos½ð2n� 1Þ sin�1ðx=aÞ� for y ¼ 0; jxj < a

¼ 0 for y ¼ 0; a < jxj

ð65Þ
where dn, en are the unknown coefficients to be determined. The Fourier-transformed expressions of
Eq. (65) are
ð�uu01 � �uu02Þ ¼ i
X1
n¼1

dnð2n=nÞJ2nðanÞ

ð�vv01 � �vv02Þ ¼
X1
n¼1

en½ð2n� 1Þ=n�J2n�1ðanÞ:
ð66Þ
Using Eqs. (63) and (66), the unknown functions C1 and D1 can be represented by the known function
A1 and the unknown coefficients dn, en as follows:
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C1 ¼ i
X1
n¼1

dnð2nÞl5J2nðanÞ=ðnD00Þ þ i
X1
n¼1

enð2n� 1Þl2J2n�1ðanÞ=ðnD00Þ � iA1ðl3l5 þ l6l2Þ=D00

D1 ¼ �i
X1
n¼1

dnð2nÞl4J2nðanÞ=ðnD00Þ � i
X1
n¼1

enð2n� 1Þl1J2n�1ðanÞ=ðnD00Þ þ iA1ðl3l4 þ l6l1Þ=D00
ð67Þ
with
D00 ¼ l1l5 � l2l4: ð68Þ

Substituting Eq. (67) into the Fourier-transformed expressions for the stresses at y ¼ 0, and by inverting

them into the physical domain, we can obtain
s0yy1 ¼
X1
n¼1

dnð2nÞ=p
Z 1

0

½Q1ðnÞ=n�J2nðanÞ cosðnxÞdn

þ
X1
n¼1

enð2n� 1Þ=p
Z 1

0

½Q2ðnÞ=n�J2n�1ðanÞ cosðnxÞdn

þ
X1
n¼1

cnð2n� 1Þ=p
Z 1

0

½Q3ðnÞ=n�J2n�1ðanÞ cosðnxÞdn

s0xy1 ¼
X1
n¼1

dnð2nÞ=p
Z 1

0

½Q4ðnÞ=n�J2nðanÞ sinðnxÞdn

þ
X1
n¼1

enð2n� 1Þ=p
Z 1

0

½Q5ðnÞ=n�J2n�1ðanÞ sinðnxÞdn

þ
X1
n¼1

cnð2n� 1Þ=p
Z 1

0

½Q6ðnÞ=n�J2n�1ðanÞ sinðnxÞdn

ð69Þ
where the expressions of the known functions Q1ðnÞ;Q2ðnÞ; . . . ;Q6ðnÞ are shown in Appendix C.
If the functions Q1ðnÞ;Q2ðnÞ; . . . ;Q6ðnÞ are calculated numerically, it can be seen that the QiðnÞ decay

rapidly as n increases for i ¼ 1; 3; 5. The behavior of the functions QiðnÞ as n increases is given by
QiðnÞ=n ! QL
i ði ¼ 2; 4Þ; QiðnÞ ! Q0

i ði ¼ 6Þ ð70Þ
where the constants QL
i and Q0

i can be calculated as
QL
i ¼ QiðnLÞ=nL ði ¼ 2; 4Þ; Q0

i ¼ QiðnLÞ ði ¼ 6Þ ð71Þ
with nL being a large value of n.
Finally, the remaining boundary condition (28) can be reduced to the form
X1
n¼1

dnGnðxÞ þ
X1
n¼1

enHnðxÞ ¼ �UðxÞ

X1
n¼1

dnKnðxÞ þ
X1
n¼1

enLnðxÞ ¼ �V ðxÞ for 06 x < a

ð72Þ
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with
GnðxÞ ¼ ð2nÞ=p
Z 1

0

½Q1ðnÞ=n�J2nðanÞ cosðnxÞdn

HnðxÞ ¼ ð2n� 1Þ=p
Z 1

0

½Q2ðnÞ=n
�

� QL
2 �J2n�1ðanÞ cosðnxÞdnþ QL

2 cos½ð2n� 1Þ sin�1ðx=aÞ�=ða2 � x2Þ1=2
�

KnðxÞ ¼ ð2nÞ=p
Z 1

0

½Q4ðnÞ=n
�

� QL
4 �J2nðanÞ sinðnxÞdnþ QL

4 sin½2n sin
�1ðx=aÞ�=ða2 � x2Þ1=2

�

LnðxÞ ¼ ð2n� 1Þ=p
Z 1

0

½Q5ðnÞ=n�J2n�1ðanÞ sinðnxÞdn

ð73Þ

UðxÞ ¼
X1
n¼1

cnð2n� 1Þ=ð2pÞ
Z 1

0

½Q3ðnÞ=n�J2n�1ðanÞ cosðnxÞdn

V ðxÞ ¼
X1
n¼1

cnð2n� 1Þ=ð2pÞ
Z 1

0

½Q6ðnÞ=n
�

� Q0
6=n�J2n�1ðanÞ sinðnxÞdnþ Q0

6 sin½ð2n� 1Þ sin�1ðx=aÞ�=ð2n� 1Þ
�
:

ð74Þ
Eq. (72) can now be solved for a determination of the coefficients dn, en by using the Schmidt method

(Yau, 1967).

Since the coefficients cn, dn, en are now known, the entire temperature and stress fields can be obtained.

The stresses s0yy1, s
0
xy1 at y ¼ 0 are shown by Eq. (69). If we slightly modify the integrands in Eq. (69), and by

using the relations
Z 1

0

JnðanÞ½cosðnxÞ; sinðnxÞ�dn ¼
n
� anðx2 � a2Þ�1=2½xþ ðx2 � a2Þ�1=2��n

sinðnp=2Þ;

anðx2 � a2Þ�1=2½xþ ðx2 � a2Þ�1=2��n
cosðnp=2Þ

o
for a < x ð75Þ
the stress intensity factors can be determined as follows:
K1 ¼ ½2pðx� aÞ�1=2s0yy1jx!aþ ¼
X1
n¼1

enð2n� 1Þð�1Þn�1QL
2=ðpaÞ

1=2

K2 ¼ ½2pðx� aÞ�1=2s0xy1jx!aþ ¼
X1
n¼1

dnð2nÞð�1ÞnQL
4=ðpaÞ

1=2
:

ð76Þ
The analysis presented in the Sections 3 and 4 is that for a case in which the nonhomogeneous interfacial

layer has been replaced by three homogeneous layers. Namely, the stress intensity factors were solved only
for the case m ¼ 3. The solutions for m ¼ 5; 7 are quite straightforward.

The values K1 and K2 are calculated numerically for m ¼ 3; 5; 7 and are plotted with respect to 1=m. The
nonhomogeneous interfacial layer (A) can be replaced by an infinite number of homogeneous layers. Then,

the results for the interfacial layer, in which the material properties are assumed to vary continuously with

respect to y, can be obtained as the value of m ! 1, or namely as 1=m ! 0. This process is explained in

detail below.

A polar coordinate system ðr; hÞ is described as shown in Fig. 5. Rectangular co-ordinates ðx; yÞ are

related to polar co-ordinates ðr; hÞ by the equation
x ¼ aþ r cos h; y ¼ r sin h: ð77Þ



Fig. 5. Polar co-ordinates with origin at crack end.
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Let us define the stress intensity factor Khh by the definition
Table

Elastic

Con

Exx (

lxy (

mxy
myx
axx (
ayy (
kx [W
ky [W
Khh ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
shh: ð78Þ
Then, Khh can be expressed in terms of the stress intensity factors K1 and K2 as follows (Williams, 1957):
Khh ¼ K1 cos
3ðh=2Þ � 3K2 cosðh=2Þ sinðhÞ=2: ð79Þ
5. Numerical examples and results

If a diffusion method is used to join a cramics and a metal, a thin diffusion layer appears between these

materials (Iwamoto and Soumiya, 1990). It is likely that the material properties in the layer vary linearly. In

the numerical calculations, it is considered that a ceramics plate is joined with a steel plate by a diffusion

method. Namely, half-plane (C), in Fig. 1, is a ceramic plate and half-plane (B) is a steel plate. The present

analysis is based on the orthotropic elasticity. This presents no problem when solving the temperature field

for an isotropic material. However, Eq. (56) has two kinds of multiple roots. Namely, a1i is equal to a2i, and
then the solutions given according to the Eqs. (55), (60) and (61) are invalid. If the value of myx is replaced by
a value slightly larger than mxy , the expressions given in Eqs. (55), (60) and (61) are still valid. The elastic

constants used in the numerical calculations are listed in Table 1. The semi-infinite integral in Eq. (52) and

those in Eqs. (73) and (74) can be easily evaluated numerically using Filon�s method because the integrands

decay rapidly as the integration variable n increases.

The Schmidt method has been applied to obtain the coefficients cn in Eq. (51) and dn, en in Eq. (72),

truncating the infinite series to nine terms. It has been verified that the left-hand side of Eq. (51) coincides
1

constants

stants Steel Ceramics (Si3N4)

GPa) 205.9 304.8

GPa) 79.2 120.0

0.3 0.27

0.3 · 1.01 0.27· 1.01
·10�5/�C) 1.14 0.29

·10�5/�C) 1.14 0.29

/(m�C)] 48.6 15.5

/(m�C)] 48.6 15.5
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with the right hand side of Eq. (51). The same applies to Eq. (72). Namely, it can been seen that the

boundary conditions inside of the crack are completely satisfied.

It is assumed that the crack is situated on the mid-surface of the interfacial layer. Namely, the HB=HC

ratio is set to 1.0. In principle, the interfacial layer (A) with a thickness of ðHB þ HCÞ is divided into m
layers, although not necessarily of equal thickness. In the solution presented here, the layer (A) is assumed

to be divided into layers of equal thickness ðHB þ HCÞ=m.
The stress intensity factor K1 is calculated for m ¼ 3; 5; 7 and HB=a ¼ 0:1. Using the results for

m ¼ 3; 5; 7, K1 is approximated by the relation:
K1= Exx1axx1
ffiffiffi
p

p
a1:5t=4

� �
¼ a1ð1=mÞ3 þ a2ð1=mÞ2 þ a3 ð80Þ
where constants a1, a2 and a3 can be easily determined. The stress intensity factor K2 is also obtained in this

manner. The results of K1 and K2 are plotted with respect to 1=m in Fig. 6. Values for mP 9 are not

calculated numerically because these values can be inferred, and the curves for 1=m < 1=7 are shown by the

broken lines. The material properties are thought to vary continuously across the interfacial layer. This

layer can be replaced by an infinite number of infinitesimally thin layers. Therefore, the value for the in-

terfacial layer can be given by the values of the curves at 1=m ! 0 in Fig. 6. Namely, a constant a3 remains

important and it is the correct value of K1= Exx1axx1
ffiffiffi
p

p
a1:5t=4f g.

For HB=a ¼ 0:1, 0.2, 0.3, 0.4, 0.8, the stress intensity factors K1 and K2 are obtained in the same manner

described above and these are plotted with respect to HB=a in Fig. 7. The Schmidt method cannot be

applied with sufficient accuracy to HB=a < 0:1.
By experimental analysis, Erdogan and Sih (1963) verified that crack extension in brittle materials ini-

tiates in a plane perpendicular to the direction of the greatest tension. Thereby, the values Khh are calculated

by substituting K1 and K2 into Eq. (79) for HB=a ¼ 0:1, 0.4, 0.8, and these are plotted versus h in Fig. 8.
Fig. 6. Stress intensity factors K1 and K2 for HB=a ¼ 0:1 versus 1=m.



Fig. 7. Stress intensity factors K1 and K2 for ceramics–steel composites versus HB=a.

Fig. 8. Stress intensity factor Khh versus h [�] for HB=að¼ HC=aÞ ¼ 0:8, 0.4, 0.1.
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6. Discussion

If a ceramics is joined with a steel by using a diffusion method, a thin diffusion layer appears between

these materials. Consider that the composites are used in high temperature environments. In this case, the
value of the stress intensity factor K1 around an interface crack is negative, as shown in Fig. 7. This means

that syy near the crack tip is negative. In linear fracture mechanics, the shape of a crack is assumed to be a

thin ellipse. Then, the crack faces may approach each other but these do not come into contact because it is

assumed that the thickness of the crack is enough to avoid the contact.

It is considered that the diffusion layer is brittle. The maximum value of the stress intensity factor Khh

occurs at h ¼ �85�. Then, it is very likely that the crack may extend at this direction when the value of Khh

reaches the fracture toughness value.

Appendix A
fiðnÞ ¼

a11 a12 � � � a1i�1 b1 a1iþ1 � � � a19
a21 a22 � � � a2i�1 b2 a2iþ1 � � � a29
..
. ..

.

a81 a82 � � � a8i�1 b8 a8iþ1 � � � a89
a91 a92 � � � a9i�1 b9 a9iþ1 � � � a99

�����������

�����������

,
D ði ¼ 1; 2; . . . ; 8; 9Þ ðA:1Þ
with
D ¼ jaijj ði; j ¼ 1; 2; . . . ; 8; 9Þ ðA:2Þ

and
a11 ¼ 0; a12 ¼ 1:0; a13 ¼ 0; a14 ¼ 0; a15 ¼ 0; a16 ¼ 0; a17 ¼ 0; a18 ¼ 0; a19 ¼ 0 b1 ¼ 1:0

a21 ¼ � sinhðjnjH1=k1Þ; a22 ¼ 0:0; a23 ¼ 0; a24 ¼ coshðjnjH1=k3Þ
a25 ¼ sinhðjnjH1=k3Þ; a26 ¼ 0; a27 ¼ 0; a28 ¼ 0; a29 ¼ 0; b2 ¼ coshðjnjH1=k1Þ
a31 ¼ � coshðjnjH1=k1Þ; a32 ¼ 0:0; a33 ¼ 0; a34 sin shðjnjH1=k3Þ
a35 ¼ coshðjnjH1=k3Þ; a36 ¼ 0; a37 ¼ 0; a38 ¼ 0; a39 ¼ 0; b3 ¼ sinhðjnjH1=k1Þ
a41 ¼ 0; a42 ¼ 0; a43 ¼ 0; a44 ¼ � coshðjnjH3=k3Þ; a45 ¼ � sinhðjnjH3=k3Þ
a46 ¼ 0; a47 ¼ 0; a48 ¼ � expð�jnjH3=k5Þ; a49 ¼ 0; b4 ¼ 0

a51 ¼ 0; a52 ¼ 0; a53 ¼ 0; a54 ¼ � sinhðjnjH3=k3Þ; a55 ¼ � coshðjnjH3=k3Þ
a56 ¼ 0; a57 ¼ 0; a58 ¼ expð�jnjH3=k5Þ; a59 ¼ 0; b5 ¼ 0

a61 ¼ 0; a62 ¼ coshð�jnjH2=k2Þ; a63 ¼ sinhð�jnjH2=k2Þ; a64 ¼ 0; a65 ¼ 0

a66 ¼ � coshð�jnjH2=k4Þ; a67 ¼ � sinhð�jnjH2=k4Þ; a68 ¼ 0; a69 ¼ 0; b6 ¼ 0

a71 ¼ 0; a72 ¼ sinhð�jnjH2=k2Þ; a73 ¼ coshð�jnjH2=k2Þ; a74 ¼ 0; a75 ¼ 0

a76 ¼ � sinhð�jnjH2=k4Þ; a77 ¼ � coshð�jnjH2=k4Þ; a78 ¼ 0; a79 ¼ 0; b7 ¼ 0

a81 ¼ 0; a82 ¼ 0; a83 ¼ 0; a84 ¼ 0; a85 ¼ 0; a86 ¼ coshð�jnjH4=k4Þ
a87 ¼ sinhð�jnjH4=k4Þ; a88 ¼ 0; a89 ¼ � expð�jnjH4=k6Þ; b8 ¼ 0

a91 ¼ 0; a92 ¼ 0; a93 ¼ 0; a94 ¼ 0; a95 ¼ 0; a96 ¼ sinhð�jnjH4=k4Þ
a97 ¼ coshð�jnjH4=k4Þ; a98 ¼ 0; a99 ¼ � expð�jnjH4=k6Þ; b9 ¼ 0

ðA:3Þ
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Appendix B
gij ¼

a011 a012 � � � a01i�1 b01j a01iþ1 � � � a0118
a021 a022 � � � a02i�1 b02j a02iþ1 � � � a0218
..
. ..

.

a0171 a0172 � � � a017i�1 b017j a017iþ1 � � � a01718
a0181 a0182 � � � a018i�1 b018j a018iþ1 � � � a01818

������������

������������

,
D0 ði ¼ 1; 2; . . . ; 17; 18Þ ðj ¼ 1; 2; 3Þ

ðB:1Þ
with
D0 ¼ a0kl
�� �� ðk; l ¼ 1; 2; . . . ; 17; 18Þ ðB:2Þ
and
a011 ¼ 0; a012 ¼ �Q121nþ Q221c21a21; a013 ¼ 0; a014 ¼ Q122n� Q222c12a12

a015 ¼ 0; a016 ¼ Q122n� Q222c22a22; a017 ¼ 0; a018 ¼ 0; a019 ¼ 0; a0110 ¼ 0

a0111 ¼ 0; a0112 ¼ 0; a0113 ¼ 0; a0114 ¼ 0; a0115 ¼ 0; a0116 ¼ 0; a0117 ¼ 0

a0118 ¼ 0; b011 ¼ 0; b012 ¼ Q121n� Q221c11a11

b013 ¼ f1ðnÞ½Q121f11 þ Q221f21=k1 � b21� � f3ðnÞ½Q122f12 þ Q222f22=k2 � b22�

a021 ¼ Q661ða21 þ nc21Þ; a022 ¼ 0; a023 ¼ �Q662ða12 þ nc12Þ; a024 ¼ 0

a025 ¼ �Q662ða22 þ nc22Þ; a026 ¼ 0; a027 ¼ 0; a028 ¼ 0; a029 ¼ 0; a0210 ¼ 0

a0211 ¼ 0; a0212 ¼ 0; a0213 ¼ 0; a0214 ¼ 0; a0215 ¼ 0; a0216 ¼ 0; a0217 ¼ 0

b0218 ¼ 0; b021 ¼ �Q661ða11 þ nc11Þ; b022 ¼ 0

b023 ¼ �½Q661ðf11=k1 � f21Þ þ f2ðnÞQ662ðf12=k2 � f22Þ�jnj=n

a031 ¼ �½�Q121nþ Q221c21a21� sinhða21H1Þ; a032 ¼ �½�Q121nþ Q221c21a21� coshða21H1Þ

a033 ¼ 0; a034 ¼ 0; a035 ¼ 0; a036 ¼ 0; a037 ¼ ½�Q123nþ Q223c13a13� sinhða13H1Þ

a038 ¼ ½�Q123nþ Q223c13a13� coshða13H1Þ; a039 ¼ ½�Q123nþ Q223c23a23� sinhða23H1Þ

a0310 ¼ ½�Q123nþ Q223c23a23� coshða23H1Þ; a0311 ¼ 0; a0312 ¼ 0; a0313 ¼ 0; a0314 ¼ 0

a0315 ¼ 0; a0316 ¼ 0; a0317 ¼ 0; a0318 ¼ 0

b031 ¼ ½�Q121nþ Q221c11a11� sinhða11H1Þ; b032 ¼ ½�Q121nþ Q221c11a11� coshða11H1Þ
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b033 ¼ ½Q123f13 þ Q223f23=k3 � b23�½f4ðnÞ sinhðjnjH1=k3Þ þ f5ðnÞ coshðjnjH1=k3Þ�
� ½Q121f11 þ Q221f21=k1 � b13�½sinhðjnjH1=k1Þ þ f1ðnÞ coshðjnjH1=k1Þ�

a041 ¼ Q661ða21 þ nc21Þ coshða21H1Þ; a042 ¼ Q661ða21 þ nc21Þ sinhða21H1Þ

a043 ¼ 0; a044 ¼ 0; a045 ¼ 0; a046 ¼ 0; a047 ¼ Q663ða13 þ nc13Þ coshða13H1Þ

a048 ¼ Q663ða13 þ nc13Þ sinhða13H1Þ; a049 ¼ Q663ða23 þ nc23Þ coshða23H1Þ

a0410 ¼ Q663ða23 þ nc23Þ sinhða23H1Þ; a0411 ¼ 0; a0412 ¼ 0; a0413 ¼ 0; a0414 ¼ 0

a0415 ¼ 0; a0416 ¼ 0; a0417 ¼ 0; b0418 ¼ 0; b041 ¼ Q661ða11 þ nc11Þ coshða11H1Þ

b042 ¼ Q661ða11 þ nc11Þ sinhða11H1Þ

b043 ¼ �Q663ðf13=k3 � f23Þðjnj=nÞ½f4ðnÞ coshðjnjH1=k3Þ þ f5ðnÞ sinhðjnjH1=k3Þ
þ Q661ðf11=k1 � f21Þðjnj=nÞ½coshðjnjH1=k1Þ þ f1ðnÞ sinhðjnjH1=k1Þ�

a051 ¼ � sinhða21H1Þ; a052 ¼ � coshða21H1Þ; a053 ¼ 0; a054 ¼ 0; a055 ¼ 0; a056 ¼ 0

a057 ¼ sinhða13H1Þ; a058 ¼ coshða13H1Þ; a059 ¼ sinhða23H1Þ; a0510 ¼ coshða23H1Þ

a0511 ¼ 0; a0512 ¼ 0; a0513 ¼ 0; a0514 ¼ 0; a0515 ¼ 0; a0516 ¼ 0; a0517 ¼ 0

a0518 ¼ 0; b051 ¼ sinhða11H1Þ; b052 ¼ coshða11H1Þ

b053 ¼ �½f4ðnÞ sinhðjnjH1=k3Þ þ f5ðnÞ coshðjnjH1=k3Þ�f13=n
þ ½sinhðjnjH1=k1Þ þ f1ðnÞ coshðjnjH1=k1Þ�f11=n

a061 ¼ �c21 coshða21H1Þ; a062 ¼ �c21 sinhða21H1Þ; a063 ¼ 0; a064 ¼ 0

a065 ¼ 0; a066 ¼ 0; a067 ¼ c13 coshða13H1Þ; a068 ¼ c13 sinhða13H1Þ

a069 ¼ c23 coshða23H1Þ; a0610 ¼ c23 sinhða23H1Þ; a0611 ¼ 0; a0612 ¼ 0

a0613 ¼ 0; a0614 ¼ 0; a0615 ¼ 0; a0616 ¼ 0; a0617 ¼ 0; a0618 ¼ 0

b061 ¼ c11 coshða11H1Þ; b062 ¼ c11 sinhða11H1Þ

b063 ¼ ½f5ðnÞ sinhðjnjH1=k3Þ þ f4ðnÞ coshðjnjH1=k3Þ�f23=jnj
� ½f1ðnÞ sinhðjnjH1=k1Þ þ coshðjnjH1=k1Þ�f22=jnj

a071 ¼ 0; a072 ¼ 0; a073 ¼ 0; a074 ¼ 0; a075 ¼ 0; a076 ¼ 0

a077 ¼ �ð�nQ123 þ c13a13Q223Þ sinhða13H3Þ; a078 ¼ �ð�nQ123 þ c13a13Q223Þ coshða13H3Þ

a079 ¼ �ð�nQ123 þ c23a23Q223Þ sinhða23H3Þ
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a0710 ¼ �ð�nQ123 þ c23a23Q223Þ coshða23H3Þ; a0711 ¼ 0; a0712 ¼ 0; a0713 ¼ 0

a0714 ¼ 0; a0715 ¼ ð�nQ125 þ c15a15Q225Þ expð�a15H3Þ

a0716 ¼ ð�nQ125 þ c25a25Q225Þ expð�a25H3Þ; a0717 ¼ 0; a0718 ¼ 0; b071 ¼ 0; b072 ¼ 0

b073 ¼ ðQ125f15 þ Q225f25=k5 � b25Þf8ðnÞ expð�jnjH3=k5Þ � ðQ123f13 þ Q223f23=k3 � b23Þ
� ½f4ðnÞ sinhðjnjH3=k3Þ þ f5ðnÞ coshðjnjH3=k3Þ�

a081 ¼ 0; a082 ¼ 0; a083 ¼ 0; a084 ¼ 0; a085 ¼ 0; a086 ¼ 0

a087 ¼ �Q663ða13 þ nc13Þ coshða13H3Þ; a088 ¼ �Q663ða13 þ nc13Þ sinhða13H3Þ

a089 ¼ �Q663ða23 þ nc23Þ coshða23H3Þ; a0810 ¼ �Q663ða23 þ nc23Þ sinhða23H3Þ

a0811 ¼ 0; a0812 ¼ 0; a0813 ¼ 0; a0814 ¼ 0; a0815 ¼ �Q665ða15 þ nc15Þ expð�a15H3Þ

a0816 ¼ �Q665ða25 þ nc25Þ expð�a25H3Þ; a0817 ¼ 0; a0818 ¼ 0; b081 ¼ 0; b082 ¼ 0

b083 ¼ Q665ðf15=k5 � f25Þ expð�jnjH3=k5Þjnj=nþ Q663ðf13=k3 � f23Þ
� ½f4ðnÞ coshðjnjH3=k3Þ þ f5ðnÞ sinhðjnjH3=k3Þ�jnj=n

a091 ¼ 0; a092 ¼ 0; a093 ¼ 0; a094 ¼ 0; a095 ¼ 0; a096 ¼ 0; a097 ¼ � sinhða13H3Þ

a098 ¼ � coshða13H3Þ; a099 ¼ � sinhða23H3Þ; a0910 ¼ � coshða23H3Þ; a0911 ¼ 0

a0912 ¼ 0; a0913 ¼ 0; a0914 ¼ 0; a0915 ¼ expð�a15H3Þ; a0916 ¼ expð�a25H3Þ

a0917 ¼ 0; a0918 ¼ 0; b091 ¼ 0; b092 ¼ 0

b093 ¼ �f8ðnÞf15 expð�jnjH3=k5Þ=nþ ½f4ðnÞ sinhðjnjH3=k3Þ þ f5ðnÞ coshðjnjH3=k3Þ�f13=n

a0101 ¼ 0; a0102 ¼ 0; a0103 ¼ 0; a0104 ¼ 0; a0105 ¼ 0; a0106 ¼ 0

a0107 ¼ �c13 coshða13H3Þ; a0108 ¼ �c13 sinhða13H3Þ; a0109 ¼ �c23 coshða23H3Þ

a01010 ¼ �c23 sinhða23H3Þ; a01011 ¼ 0; a01012 ¼ 0; a01013 ¼ 0; a01014 ¼ 0

a01015 ¼ �c15 expð�a15H3Þ; a01016 ¼ �c25 expð�a25H3Þ; a01017 ¼ 0; a01018 ¼ 0

b0101 ¼ 0; b0102 ¼ 0

b0103 ¼ �f8ðnÞ expð�jnjH3=k5Þf25=jnj � ½f5ðnÞ sinhðjnjH3=k3Þ þ f4ðnÞ coshðjnjH3=k3Þ�f23=jnj

a0111 ¼ 0; a0112 ¼ 0; a0113 ¼ ð�Q122nþ Q222c12a12Þ sinhð�a12H2Þ

a0114 ¼ ð�Q122nþ Q222c12a12Þ coshð�a12H2Þ

a0115 ¼ ð�Q122nþ Q222c22a22Þ sinhð�a22H2Þ
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a0116 ¼ ð�Q122nþ Q222c22a22Þ coshð�a22H2Þ

a0117 ¼ 0; a0118 ¼ 0; a0119 ¼ 0; a01110 ¼ 0

a01111 ¼ �ð�Q124nþ Q224c14a14Þ sinhð�a14H2Þ

a01112 ¼ �ð�Q124nþ Q224c14a14Þ coshð�a14H2Þ

a01113 ¼ �ð�Q124nþ Q224c24a24Þ sinhð�a24H2Þ

a01114 ¼ �ð�Q124nþ Q224c24a24Þ coshð�a24H2Þ

a01115 ¼ 0; a01116 ¼ 0; a01117 ¼ 0; a01118 ¼ 0; b0111 ¼ 0; b0112 ¼ 0

b0113 ¼ ðQ122f12 þ Q222f22=k2 � b22Þ½f2ðnÞ sinhð�jnjH2=k2Þ þ f3ðnÞ coshð�jnjH2=k2Þ�
� ðQ124f14 þ Q224f24=k4 � b24Þ½f6ðnÞ sinhð�jnjH2=k4Þ þ f7ðnÞ coshð�jnjH2=k4Þ�

a0121 ¼ 0; a0122 ¼ 0; a0123 ¼ Q662ða12 þ nc12Þ coshð�a12H2Þ

a0124 ¼ Q662ða12 þ nc12Þ sinhð�a12H2Þ; a0125 ¼ Q662ða22 þ nc22Þ coshð�a22H2Þ

a0126 ¼ Q662ða22 þ nc22Þ sinhð�a22H2Þ; a0127 ¼ 0; a0128 ¼ 0; a0129 ¼ 0; a01210 ¼ 0

a01211 ¼ �Q664ða14 þ nc14Þ coshð�a14H2Þ; a01212 ¼ �Q664ða14 þ nc14Þ sinhð�a14H2Þ

a01213 ¼ �Q664ða24 þ nc24Þ coshð�a24H2Þ; a01214 ¼ �Q664ða24 þ nc24Þ sinhð�a24H2Þ

a01215 ¼ 0; a01216 ¼ 0; a01217 ¼ 0; a01218 ¼ 0; b0121 ¼ 0; b0122 ¼ 0

b0123 ¼ �Q662ðf12=k2 � f22Þ½f2ðnÞ coshð�jnjH2=k2Þ þ f3ðnÞ sinhð�jnjH2=k2Þ�jnj=n
þ Q664ðf14=k4 � f24Þ½f6ðnÞ coshð�jnjH2=k4Þ þ f7ðnÞ sinhð�jnjH2=k4Þ�jnj=n

a0131 ¼ 0; a0132 ¼ 0; a0133 ¼ sinhð�a12H2Þ; a0134 ¼ coshð�a12H2Þ

a0135 ¼ sinhð�a22H2Þ; a0136 ¼ coshð�a22H2Þ; a0137 ¼ 0; a0138 ¼ 0; a0139 ¼ 0

a01310 ¼ 0; a01311 ¼ sinhð�a14H2Þ; a01312 ¼ coshð�a14H2Þ; a01313 ¼ sinhð�a24H2Þ

a01314 ¼ coshð�a24H2Þ; a01315 ¼ 0; a01316 ¼ 0; a01317 ¼ 0; a01318 ¼ 0; b0131 ¼ 0; b0132 ¼ 0

b0133 ¼ �f12½f2ðnÞ sinhð�jnjH2=k2Þ þ f3ðnÞ coshð�jnjH2=k2Þ�=n
þ f14½f6ðnÞ sinhð�jnjH2=k4Þ þ f7ðnÞ coshð�jnjH2=k4Þ�=n

a0141 ¼ 0; a0142 ¼ 0; a0143 ¼ c12 coshð�a12H2Þ; a0144 ¼ c12 sinhð�a12H2Þ

a0145 ¼ c22 coshð�a22H2Þ; a0146 ¼ c22 sinhð�a22H2Þ; a0147 ¼ 0; a0148 ¼ 0

a0149 ¼ 0; a01410 ¼ 0; a01411 ¼ �c14 coshð�a14H2Þ; a01412 ¼ �c14 sinhð�a14H2Þ
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a01413 ¼ �c24 coshð�a24H2Þ; a01414 ¼ �c24 sinhð�a24H2Þ; a01415 ¼ 0

a01416 ¼ 0; a01417 ¼ 0; a01418 ¼ 0; b0141 ¼ 0; b0142 ¼ 0

b0143 ¼ f22½f3ðnÞ sinhð�jnjH2=k2Þ þ f2ðnÞ coshð�jnjH2=k2Þ�=jnj
� f24½f7ðnÞ sinhð�jnjH2=k4Þ þ f6ðnÞ coshð�jnjH2=k4Þ�=jnj

a0151 ¼ 0; a0152 ¼ 0; a0153 ¼ 0; a0154 ¼ 0; a0155 ¼ 0; a0156 ¼ 0; a0157 ¼ 0

a0158 ¼ 0; a0159 ¼ 0; a01510 ¼ 0; a01511 ¼ ð�Q124nþ Q224c14a14Þ sinhð�a14H4Þ

a01512 ¼ ð�Q124nþ Q224c14a14Þ coshð�a14H4Þ

a01513 ¼ ð�Q124nþ Q224c24a24Þ sinhð�a24H4Þ

a01514 ¼ ð�Q124nþ Q224c24a24Þ coshð�a24H4Þ

a01515 ¼ 0; a01516 ¼ 0; a01517 ¼ �ð�Q126nþ Q226c16a16Þ expð�a16H4Þ

a01518 ¼ �ð�Q126nþ Q226c26a26Þ expð�a26H4Þ; b0151 ¼ 0; b0152 ¼ 0

b0153 ¼ ðQ124f14 þ Q224f24=k4 � b24Þ½f6ðnÞ sinhð�jnjH4=k4Þ þ f7ðnÞ coshð�jnjH4=k4Þ�
� ðQ126f16 þ Q226f26=k6 � b26Þf9ðnÞ expð�jnjH4=k6Þ

a0161 ¼ 0; a0162 ¼ 0; a0163 ¼ 0; a0164 ¼ 0; a0165 ¼ 0; a0166 ¼ 0; a0167 ¼ 0

a0168 ¼ 0; a0169 ¼ 0; a01610 ¼ 0; a01611 ¼ Q664ða14 þ nc14Þ coshð�a14H4Þ

a01612 ¼ Q664ða14 þ nc14Þ sinhð�a14H4Þ; a01613 ¼ Q664ða24 þ nc24Þ coshð�a24H4Þ

a01614 ¼ Q664ða24 þ nc24Þ sinhð�a24H4Þ; a01615 ¼ 0; a01616 ¼ 0; a01617 ¼ 0

a01618 ¼ 0; b0161 ¼ 0; b0162 ¼ 0

b0163 ¼ �Q664ðf14=k4 � f24Þ½f6ðnÞ coshð�jnjH4=k4Þ þ f7ðnÞ sinhð�jnjH4=k4Þ�jnj=n
þ Q666ðf16=k6 � f26Þf9ðnÞ expð�jnjH4=k6Þjnj=n

a0171 ¼ 0; a0172 ¼ 0; a0173 ¼ 0; a0174 ¼ 0; a0175 ¼ 0; a0176 ¼ 0; a0177 ¼ 0

a0178 ¼ 0; a0179 ¼ 0; a01710 ¼ 0; a01711 ¼ sinhð�a14H4Þ; a01712 ¼ coshð�a14H4Þ

a01713 ¼ sinhð�a24H4Þ; a01714 ¼ coshð�a24H4Þ; a01715 ¼ 0; a01716 ¼ 0

a01717 ¼ 0; a01718 ¼ 0; b0171 ¼ � expð�a16H4Þ; b0172 ¼ � expð�a26H4Þ

b0173 ¼ �f14½f6ðnÞ sinhð�jnjH4=k4Þ þ f7ðnÞ coshð�jnjH4=k4Þ�=nþ f16f9ðnÞ expð�jnjH4=k6Þ=n

a0181 ¼ 0; a0182 ¼ 0; a0183 ¼ 0; a0184 ¼ 0; a0185 ¼ 0; a0186 ¼ 0; a0187 ¼ 0
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a0188 ¼ 0; a0189 ¼ 0; a01810 ¼ 0; a01811 ¼ c14 coshð�a14H4Þ; a01812 ¼ c14 sinhð�a14H4Þ
a01813 ¼ c24 coshð�a24H4Þ; a01814 ¼ c24 sinhð�a24H4Þ; a01815 ¼ 0; a01816 ¼ 0
a01817 ¼ 0; a01818 ¼ 0; b0181 ¼ �c16 expð�a16H4Þ; b0182 ¼ �c26 expð�a26H4Þ;
b0183 ¼ f24½f7ðnÞ sinhð�jnjH4=k4Þ þ f6ðnÞ coshð�jnjH4=k4Þ�=jnj � f26f9ðnÞ expð�jnjH4=k6Þ=jnj ðB:3Þ
Appendix C
Q1ðnÞ ¼ ðl4m2 � l5m1Þ=D00; Q2ðnÞ ¼ ðl1m2 � l2m1Þ=D00

Q3ðnÞ ¼ f½ðl3l5 þ l6l2Þm1 � ðl3l4 þ l6l1Þm2�=D00 þ m3g
Q4ðnÞ ¼ ðl5m4 � l4m5Þ=D00; Q5ðnÞ ¼ ðl2m4 � l1m5Þ=D00

Q6ðnÞ ¼ f½ðl3l4 þ l6l1Þm5 � ðl3l5 þ l6l2Þm4�=D00 þ m6g

ðC:1Þ
with
m1 ¼ g21ð�Q121nþ Q221c21a21Þ;
m2 ¼ ð�Q121nþ Q221c11a11Þ þ g22ð�Q121nþ Q221c21a21Þ;
m3 ¼ �g23ð�Q121nþ Q221c21a21Þ þ f1ðnÞðQ121f11 þ Q221f21=k1 � b21Þ;
m4 ¼ Q661½ða11 þ nc11Þ þ g11ða21 þ nc21Þ�; m5 ¼ Q661g12ða21 þ nc21Þ;
m6 ¼ Q661½g13ða21 þ nc21Þ þ ðf11=k1 � f21Þjnj=n

ðC:2Þ
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