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Abstract

Thermal stresses around a crack in the interfacial layer between two dissimilar elastic half-planes are solved. The
surfaces of the crack are assumed to be insulated. The material constants of the interfacial layer are assumed to vary
continuously from those of the upper half-plane to those of the lower half-plane. Uniform heat flows perpendicular the
crack. Stress intensity factors are calculated numerically for several thicknesses of the interfacial layer.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Ceramic materials have good anti-oxidation characteristics at high temperatures and are good thermal
insulators. Coating metal components with ceramics is one way of increasing the application range of metal
parts. If a diffusion method is used to join a ceramic and a metal, a thin diffusion layer appears between
ceramic and the metal. The diffusion layer is relatively weak and inclined to fracture. It is therefore necessary
to solve the stress intensity factors around a crack in the interfacial zone in order to avoid catastrophic
failure in composite materials.

Delale and Erdogan (1988) considered that the cracked layer is nonhomogeneous and its material
constants vary continuously within a range from those of the upper half-plane to those of the lower half-
plane. The two-dimensional stress and displacement fields are solved for internal pressure on the crack
surfaces. Later, axisymmetric solutions have been determined for a penny-shaped crack in an interfacial
nonhomogeneous layer between two dissimilar elastic half-spaces by Ozturk and Erdogan (1995, 1996).
Xue-Li and Duo (1996) provided the stresses around a cylindrical crack in a nonhomogeneous layer
between an infinite elastic medium and a circular elastic cylinder under Mode III torsional loading.

As for Mode I loading, axisymmetric stresses were solved for a cylindrical crack in an interfacial
cylindrical layer between a circular elastic cylinder and an infinite elastic medium (Itou and Shima, 1999).
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The material constants vary continuously from those of the cylinder to those of the infinite medium. Rather
than apply the nonhomogeneous theory of elasticity to solve the problem, the nonhomogeneous layer is
divided into several homogeneous layers each having different elastic constants. The method has also been
applied to obtain dynamic stresses around a crack in a nonhomogeneous interfacial layer between two
dissimilar elastic half-planes (Itou, 2001a). Dynamic stresses for a penny-shaped crack in a functionally
graded material (FGM) interlayer between two dissimilar homogeneous half-spaces are solved under Mode
II1 torsional loading (Li and Weng, 2002).

In the present paper, thermal stresses are solved for a crack in the interfacial layer between two dissimilar
elastic half-planes. Heat flows perpendicular to the crack and is interrupted by the heat insulating surfaces
of the crack. The material constants in the layer vary continuously from those of the upper half-plane to
those of the lower half-plane. In order to solve the problem, the same method employed in Itou and Shima
(1999) and Itou (2001a) is applied. Namely, the nonhomogeneous layer is divided into several homogeneous
layers that have different elastic constants. The solution is obtained using expressions in the theory of
orthotropic elasticity. Numerical calculations are carried out only for composite materials made of iso-
tropic materials. However, whenever solutions are needed for composite materials made of orthotropic
materials, these can be calculated numerically.

Thermal stresses were solved for an infinite orthotropic plate weakened by a crack by Tsai (1984). The
corresponding problem for an infinite orthotropic cracked layer was studied by Itou (2000). Recently, the
author provided thermal stresses around two parallel cracks in an infinite orthotropic plate (Itou, 2001b).

In the present solution, the temperature field is determined by reducing the boundary conditions to a set
of dual integral equations using the Fourier transform technique. If a difference in the crack surface
temperature is expanded in a series of functions that are zero outside the crack, the continuous temperature
condition outside the crack is satisfied. Unknown coefficients in the series are then determined using the
Schmidt method (Morse and Feshbach, 1958) so as to satisfy the condition inside the crack. Next, the
mixed boundary value conditions related to displacements and stresses are reduced to two sets of dual
integral equations. To solve the equations, differences in displacements at the crack are also expanded in a
series of functions that are zero outside the crack. The Schmidt method (Yau, 1967) is once more used to
obtain the unknown coefficients in the series.

As the number of divisions in the interfacial layer increases, the solution approaches that for a non-
homogeneous interfacial layer. Using this approach, the stress intensity factors are computed numerically
for composite materials made of ceramic and steel.

2. Fundamental equation

Consider a crack located on the x-axis from —a to +a with respect to the rectangular co-ordinates (x, y)
as shown in Fig. 1. The interfacial layer (A) is denoted by (—Hp < y < Hc). The upper half-plane and the
lower half-plane are labeled half-plane (C) and half-plane (B), respectively. The interfacial layer (A) is
further divided into an upper interfacial layer (A-1) denoted by (0 <y < Hc) and a lower interfacial layer
(A-2) denoted by (—Hp <y <0). If a state of plane stress is assumed, the stresses can be expressed by

Txx = Qllgxx + Q128yy - ﬁlTa Ty = Q128xx + Q228}:V - ﬁva Ty = Q66’ny (1)
with
Qll = Exx/(l - V,wcvxy)v Q22 = Ey)’/(l - nyvyx)

On = EWVXy/(l - VyxVXy) = Exwi/(l - ny"yX) (2)
Q66 = ny7 ﬁl = leocyy + Qll%m ﬂz = leo‘xx + szfxw
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Fig. 1. Geometry and co-ordinate system.

where the strain—displacement relations are as follows:
& = Ou/Ox, ¢, =00/0y, 7y, =0u/0y+ 0v/0x (3)

and E,,, E,, are the Young’s moduli, G,, is the shear modulus, v,,, v,, are the Poisson ratios, and a,., o,, are
the coeflicients of linear thermal expansion. In Eq. (1), the temperature 7T satisfies the following partial
differential equation

O’T /x> + K2 °T)dy* =0 (4)
with
K =k /k, (5)

where k,, k. are the thermal conductivities.
The equations of equilibrium can be written as

0110%u/dx? + Qgs0%u/dy* + LO*v/0xdy — B,0T /ox = 0

Q660%0/0x* + Qs0°0/0y* + LO*u/dxdy — B,0T /dy =0
with

L= 01+ Oss- ()
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The material property E,, probably varies continuously in the interfacial layer with respect to y, as
shown in Fig. 2. Other constants (Gyy, Vyy, Vyx, Oy, %y, Ky, ki) are assumed to vary in a similar manner
according to the curve describing E,.. The Young’s modulus E,, is expressed by the relation

E, = (V)vc/vxy)Exx- (8)

Consider the case in which the heat flux ¢ flows in the direction of the negative y-axis. By restricting our
concern to only the stress intensity factors, it is possible to solve the problem for the following boundary
conditions

kyAlaTAl/ay = kyAZGTAz/Gy for y= O7 \x\ < 0 (9)
0Ta1 /0y = —q/kar = —t fory=0, |x| <a (10)
Tar = Tar fOI'y = 0, a < \x| (11)
kyCaTc/ay = kyAlaTAl/ay, TC = TAl for y= Hc, |x| < 0 (12)
kya20Tr2 /0y = kyg0T/Qy, Tar =Tg for y=—Hy, |x[ < oo (13)
TiwvAl = TypA2,  TapAl = TypA2 for y= 07 |x| < o0 (14)
A E.,
ExxC
*
ExxA
ExxB
y
“H, | o H,

Fig. 2. Young’s modulus E,, as a function of y.



S. Itou | International Journal of Solids and Structures 41 (2004) 923-945 927

Tya1 =0, Tya1r =0 fory=0, x| <a (15)
Ual = Upd, Ual =Uar fory=0, a<|x]| (16)
Tye = Typals,  TyC = Tyal, Uc = Ua1, Uc =1va1 for y=Hc, |x| < oo (17)
Tywa2 = Ty, TyA2 = TyB, Ua2 =Up, Uar =0vg for y=—Hp, x| <oo (18)

where ¢ is a constant and the variables with subscripts A1, A2, B, C are those for the layers (A-1), (A-2), the
upper half-plane (C) and the lower half-plane (B), respectively. It is assumed that the crack faces do not
come into contact and also that the crack surfaces are thermally insulated.

3. Division of the interfacial layer

In order to solve the problem of thermal stresses in the nonhomogeneous layer, the interfacial layer (A)
in Fig. 1 is first replaced by several homogeneous layers. The number of homogeneous layers, m, must be
odd. In the present example, m is set to 3. It should be noted that if m = 3, the interfacial layer (A) is divided
into four layers because the cracked layer denoted by (—H, < y < H)) separates into two parts. Namely, the
interfacial layer (A) is divided into layer (1) occupying (0 <y < H,), layer (3) occupying (H; <y < H;), layer
(2) occupying (—H, <y <0) and layer (4) occupying (—H; <y < — H,), as shown in Fig. 3. For conve-
nience, the upper half-plane (C) and the lower half-plane (B) are denoted by (5) and (6), respectively.

Y

®)

w

T
=

Q)

Fig. 3. Nonhomogeneous interfacial layer replaced by three homogeneous layers.
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In the interfacial layer (A), all material properties except for E,, are assumed to vary linearly with respect
to y. For example, E, 5 is expressed as

ExxA - ExxB + (ExxC - ExxB)(y +HB)/(HC + HB) (19)

The material properties (Gyy, Viy, Vi, Oy, %y, Ky, ki) are also given by similar forms like in Eq. (19). Of
course, £, is expressed by Eq. (8). For m = 3 the Young’s moduli of the layers (1)—(4) take the average
values E,.1, E., Ev3, Exa as seen in Fig. 4 instead of E, 4 denoted by Eq. (19). The same applies to the other
material properties.

For m = 3, the boundary conditions (9)—(18) can be replaced by the following equations:

k10T /Oy = k), 0T, /0y for y =0, |x| < o0 (20)
0T /0y =—t fory=0, |x| <a (21)
=7 fory=0, a<lx| (22)
k,30T3/0y = k, 0Ty /oy, T3 =T, fory=H,, |x| <oo (23)
ky5aT5/ay = ky3©T3/6y, T5 = T3 for y= H3, |x| < 0 (24)
kyzaTz/ay = ky48T4/6y, =1, for y= 7H2, |)C| < o0 (25)
ky46T4/6y = kyéaTﬁ/a% T, =T for y= —H,, |X| < 0 (26)

Exx

Exxs
E., /
xx3 /
4
/
/
"
//
Exe /
/ Exxl
/
'/
Exx4 ‘
’1/
Exxé /
4
>y

_H, -H, 0 H, H,

Fig. 4. Young’s modulus E,, in homogeneous sublayers.
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Tyl = T2, Tyl =Tz for y =10, |x] < oo (27)
Ty =0, 75 =0 fory=0, |x| <a (28)
Uy =1u, vy=10 fory=0, a<lx| (29)
T3 = Tyyl, T3 = Tyt, Uz =uy, v3=10; fory=H, |x| <oo (30)
Tys = Ty3, Tus = Ty3, Us =uz, Us =103 fory=Hs, |x| <oo (31)
Tyo = Tydy,  Tyo = Tya, U =1Us, Uy =04 fory=—H, |x| <oo (32)
Typd = Tyye,  Tupd = Tpes  Us = U, Uy = Vs for y=—Hy, |x| < oo (33)
4. Analysis

To find the solutions, we introduce the Fourier transforms

o= [ " f(x) exp(icr) dr (34)

10 =1/(n) [ 7@ enp(-ign) (35)
Applying Eq. (34) into Eq. (6) results in
Oged?i/dy> — &0y i — iLEAD/dy + 1B, 6T = 0

R P YT = (36)
O0nd™v/dy” — & Ogeb — iLEdu/dy — B,0T /Oy = 0
Eliminating u or v from Eq. (36), the ordinary differential equations are obtained
Ld'u/dyt + Gd%a/dy? + G = in & T/dy” +in, T 37)

Ld*/dy* + (d°0/dy + GO = 13 T/dy’ + n,dT/dy

with
(= On0e/L, L =—E(0h + 0n0n—L)/L, =010 /L
m = &Py — BiOn/L), My =EB10s/L, 05 = Oeslr/L (38)
Ny = fz(ﬁl = B,0n/L)

The Fourier-transformed stresses are found to be

Ty = On(—i&)a+ Opdo/dy — BT, 7,y = O1a(—i&)ut + Ondv/dy — B, T
‘fxy = Qsﬁdﬂ/dy — iéQ66f7

Eq. (4) can now be expressed in the Fourier domain as
d*T/dy* — (¢/k)’T = 0. (40)

First, the temperature field 7 is solved. The solutions of the Eq. (40) have the following form for each
layer i (i =1,2,3,4):
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T; = 4, sinh(|é|y/k;) + B; cosh(|¢[y/k) )

where 4, and B, are unknown coefficients. For the upper half-plane (5) and lower the half-plane (6), T5 and
T; are expressed by

Ts = Asexp(—|&|y/ks) (42)

Ty = Ag exp(—|&|y/ke) (43)

where 45 and A¢ are also unknown coeflicients.
Using Eqgs. (20),(23)-(26), the unknowns B, 4,, By, A3, B, A4, B4, As, Ag can be expressed by an un-
known A, as follows,

Bi = fi(&)A, Ay = f2(8)Ar, By= f3(E)A1, A3 = fi(E)A,

By = f5(&)Ay, As=fs(&)A1, Bi=f1()A1, As = fz(E)A (44)
As = fo(£)4,
where the expressions of the known functions f;(¢) (i = 1,2,...,9) are shown in Appendix A.

To satisfy Eq. (22), the temperature difference at y = 0 is expanded by the series

(77 79) = Y evcos(an — 1)sin” s/ for | < (45)

(T —T9) =0 fora< |x|
where ¢, are unknown coefficients and the superscript 0 denotes the values at y = 0. The Fourier transform

of Eq. (45) now becomes

o]

n(T) = 19) =D cal(2n = 1)/EWa 1 (ad) (46)
n=1
where J,(£) is the Bessel function. The left-hand side in Eq. (46) can be represented by
ﬂ(T]O *Tzo) = b1(&)4, (47)
with
bi(&) = f1(¢) = f3(8)- (48)

From Egs. (46) and (47), it can be seen that the unknown 4; can be replaced by ¢, in the following
manner

4= e{(2n = 1)/[b1(E} 1 (al). (49)
n=1
Then, the Fourier transform of the temperature gradient 07, /dy at y = 0 can be represented by
OT1 /0y =Y cu{(2n = 1)[&|/ kb1 (&)E]} o (). (50)
n=1

Eq. (21) is the remaining boundary condition with respect to the temperature field and it can now be
reduced to the form

Zc,,Fn()c):—t7 for0<x<a (51)
n=1
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with

F(x)=[2n—1) /(kln)}{ /0 Oo[bz(é) — L), 1 (ad) cos(éx) dE + b cos[(2n — 1) sin~ (x/a)]/(a* — xz)l/z}

(52)
and
by(&) =1/b1(¢). (53)
The constant b5 in Eq. (52) can be calculated by
by = ba(&p) (54)

with &; being a large value of ¢. The region |x| < a in Eq. (21) can be replaced by 0 <x < a in Eq. (51),
because the temperature 7 is now an even function with respect to x. The integrand in Eq. (52) decays
rapidly as ¢ increases and the semi-infinite integral can be evaluated numerically using Filon’s method.
Therefore, Eq. (51) can now be solved for the coefficients ¢, by the Schmidt method (Morse and Feshbach,
1958). The unknown 4, is given by Eq. (49), and the entire temperature field can now be obtained.

Next, the stress field is found. It can be seen that the solutions of Egs. (37) take the following forms for
the layers i (i = 1,2, 3,4):

it; = C;sinh(o,y) + D; cosh(ay;y) 4 E; sinh(ony) + F; cosh(aniy) 4 id,f sinh(|E|y/k:) /&
+ iB,fy cosh(|E]y/ki) /€

v; = 1y,;D; sinh(oy,;y) + 1y,;C; cosh(ay;y) + 19,:F; sinh (o) + iyyE; cosh(on,y) (53)
+ Bifssinh(|<|y/k;) /1€] + Aifs: cosh([E]y/ ki) /€]

where C;, D;, E;, F; are unknown coefficients and «;, o, are the roots of the equation

Lot + Ga? + (5 =0. (56)
In Eq. (55), 7155 V2> f2i» f5 are expressed by

i = (szlli - Q66ia%i)/([4iéali)v V2 = (CZQIU - Q66i0‘§l~)/(lfi§°‘2i) (57)
foi = [B1:(Qesiki — Omi) + oLkl [ fas (58)
f3i = [QesiBoki + 1 (BLi — O11ifan)]/ fa

with
Jai = O6i0mi — k?(Qééi + 0100 — L7) + QlliQ66ik?- (59)

For the upper half-plane (5) and the lower half-plane (6), the solutions of Eq. (37) have the forms

s = Csexp(—oysy) + Esexp(—oasy) + (14sfis/E) exp(—|E|y/ks)

60
Us = —iy,5Cs exp(—ousp) — 1yy5Es exp(—aasy) — (dsfas/[E]) exp(—[E]y/ks) o
s = Co exp(ai6y) + E¢ exp(onsy) + (14gf16/E) exp(|E]y/ke)

U6 = 1726C6 €xp(a116) + 1726E6 €xp(226y) + (Ao f26/|E]) exp(|Ely/ks)

where Cs, Es, Cs, Eg are unknown coefficients. The roots oy; and ay; (i = 5,6) are chosen so as to have
positive real parts due to the fact that the displacements us, ¥s, i, U vanish as y approaches +oo or —oco.

Substituting Egs. (55), (60), (61) into Eq. (39), stresses can be expressed in the Fourier domain. Using
Eqgs. (27), (30)—(33), the unknowns.

(61)
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E, F, Cy, Dy, Ey, F5, C3, D3, Es, F3, C4, Dy, E4, Fy, Cs, Es, Cs, Eg can be represented by the unknowns Cj,
D; and a known 4, as follows:
Ey = Cign + Digin +141815, F1 = Ciga + Digan + 14182
Cy = Cigs1 + Digsn +141833, Dy = Ciga1 + Digar + 141843
Ey = Ci1gs1 + D1gsz +1418s3, F2 = Cige1 + D1gex + 141863
C; = Cign + Dign +idi1g73, D3 = Cigsi + Digsy + 141853
E3 = Cigo1 + Digo +141803,  F3 = Cigio1 + Di1gio2 + 1418103 (62)
Cy = Cigin + Digia +i41g1s, Dy = Cigia1 + D1gioa + 1418123
Ey = Cigis + Digin + 1418133,  Fi = Cigia + D1g1aa + 1418143
Cs = Cigis1 + Digisy +141&153,  Es = Cigi61 + Di1gis2 + 1418163
Cs = Cigin + Digin +id1g173,  Es = Cig1s1 + D1g1s2 + 1418183

where the expressions of the known functions g1, g2, ... ... , 8183, are shown in Appendix B.
The differences in the displacements at y =0 can now be expressed in the Fourier domain by the
equations

@ —u)=Cily + Dy +id, 13, 00— ) =iCly +iDyls + A1l (63)
with

Lh=g1—81—81, bL=14+gn—gn—ga

I3 =g — g3 — g + [1(E)fi1 — f5(E)f1n) /€

la=7y1+8uya — €172 — &517200 Is = &120a1 — €32712 — €527
le = —g13721 + &33712 + 85372 + [fa1 — f2(E)f12]/[E]-

(64)

Eq. (29) shows that the displacements are continuous outside of the crack. To satisfy these conditions,
the differences in the displacements are expanded by the series

n(ud —ul) =32 d,sin2nsin"' (x/a)] fory=0, x| <a

=0 fory=0, a < |x| (65)
() —9) =32 e,cos[(2n — 1)sin"'(x/a)] fory=0, |x| <a

=0 fory=0, a < |x|

where d,, e, are the unknown coefficients to be determined. The Fourier-transformed expressions of
Eq. (65) are

() — u) = iidn(Zn/f)Jzn(aé)
! (66)
@ — ) =Y el(2n—1)/& a1 (ad).

n=1

3

Using Egs. (63) and (66), the unknown functions C; and D; can be represented by the known function
A; and the unknown coefficients d,, e, as follows:
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Cr=1Y _d,(2n)ls)n(ad)/(EA") +i D es(2n — V)laJo1(al) [ (EA") — idy(Is]s + L6y) / A"
n=1 n=1
Dy = =i d,(2n)laJ,(a) /(E4") =1 ey(2n — 1) 11Ty 1 (a) [ (E4") +idi (L34 + 1)/ 4"
n=1 n=1
with
A" = 115 — b, (68)

Substituting Eq. (67) into the Fourier-transformed expressions for the stresses at y = 0, and by inverting
them into the physical domain, we can obtain

o0

0 =3 d,n)/n / " 101(8)) EMnlal) cos(éx) g

n=1

> (2= 1)/ |10/ ) cos(n de

+ Zoc:cn 2n—1)/xn /x[Q3(f)/§]J2,,,1(a§)Cos(ix) dé
n=1 (69)

0= S d )/ / " 104(8)/ & (a) sin(Ex) de

Ve

+>» e(2n—1)/n /Ox[Qs(f)/ﬁ]Jz,,,l(aé) sin(&x) dé

1

n

NgE

Y e2n—1)/x /0 " 106(6)/ Qa1 (a8) sin(&x) de

1

n

where the expressions of the known functions Q;(¢), 0,(&), ..., Qs(&) are shown in Appendix C.
If the functions Q;(&), 0»(&),...,06(&) are calculated numerically, it can be seen that the Q;(£) decay
rapidly as ¢ increases for i = 1,3, 5. The behavior of the functions Q,(¢) as ¢ increases is given by

0/(9/E—0F (i=24), Q-0 (i=6) (70)
where the constants QF and 0 can be calculated as
Qf =0i(&)/e (i=2,4), Q? =0i(&) (i=06) (71)

with &, being a large value of &.
Finally, the remaining boundary condition (28) can be reduced to the form

i A x)+§:e,,Hn(x):—U(x)
n:ol n;l (72)

X) —i—ZenL,,(x) =—V(x) for0<x<a
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with

G,(x) = (2n)/ /0 T 101(8)) (@) cos(Ex) de
Hy(x) = (20— 1>/n{ [ 10006 — Gt cos(é) i + Qs cosi(2n— Dysin” (/)] (e - x2>”2}
K@) = <2n>/n{ |10/~ Qiblac sinfnde + O sinfaasin ' (x/a) /(" x2>”2}

L) = @1 - 1)/x [ " 05(8)/ 81 (a) sin(2x)
(73)

9= e (20— 1)/ / T 105(8)/ a1 (ad) cos(Ex) dé

n=

i 0= 1)/ [ 71061/ - /e (ad)sin(en) d& + Ghsinl(2n — 1ysin” x/a))/ 20 1) .

(74)

Eq. (72) can now be solved for a determination of the coefficients d,, e, by using the Schmidt method
(Yau, 1967).

Since the coefficients ¢,, d,, ¢, are now known, the entire temperature and stress fields can be obtained.
The stresses T_?/yl’ rgyl at y = 0 are shown by Eq. (69). If we slightly modify the integrands in Eq. (69), and by
using the relations

| tayicos(én sin(o)ac

{ &' (P — a?) e+ (P — @) ) sin(n)2),
a2 — ) P+ (2 — )V cos(nn/E)} fora<x  (75)

the stress intensity factors can be determined as follows:

Kl = [27'[()(7 /2 y |x~>a+ Zen 2” 71 " 1QL/ na 1/2
(76)
KZ = [27'5()(7— ) /2 J(:yl |x~>a+ Zd 2” ”QL/ na 1/2'

The analysis presented in the Sections 3 and 4 is that for a case in which the nonhomogeneous interfacial
layer has been replaced by three homogeneous layers. Namely, the stress intensity factors were solved only
for the case m = 3. The solutions for m = 5,7 are quite straightforward.

The values K and K, are calculated numerically for m = 3,5,7 and are plotted with respect to 1/m. The
nonhomogeneous interfacial layer (A) can be replaced by an infinite number of homogeneous layers. Then,
the results for the interfacial layer, in which the material properties are assumed to vary continuously with
respect to y, can be obtained as the value of m — oo, or namely as 1/m — 0. This process is explained in
detail below.

A polar coordinate system (»,0) is described as shown in Fig. 5. Rectangular co-ordinates (x,y) are
related to polar co-ordinates (r,0) by the equation

x=a+rcosf, y=rsinf. (77)
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VY

——> -
—-a a X
Fig. 5. Polar co-ordinates with origin at crack end.
Let us define the stress intensity factor Ky by the definition
K()() = III'I(} \ 27'[]"‘[0(). (78)
r—

Then, Ky can be expressed in terms of the stress intensity factors K| and K, as follows (Williams, 1957):

Kgop = K cos*(0/2) — 3K, cos(0/2) sin(0) /2. (79)

5. Numerical examples and results

If a diffusion method is used to join a cramics and a metal, a thin diffusion layer appears between these
materials (Iwamoto and Soumiya, 1990). It is likely that the material properties in the layer vary linearly. In
the numerical calculations, it is considered that a ceramics plate is joined with a steel plate by a diffusion
method. Namely, half-plane (C), in Fig. 1, is a ceramic plate and half-plane (B) is a steel plate. The present
analysis is based on the orthotropic elasticity. This presents no problem when solving the temperature field
for an isotropic material. However, Eq. (56) has two kinds of multiple roots. Namely, oy; is equal to ¢,;, and
then the solutions given according to the Egs. (55), (60) and (61) are invalid. If the value of v, is replaced by
a value slightly larger than v,,, the expressions given in Eqs. (55), (60) and (61) are still valid. The elastic
constants used in the numerical calculations are listed in Table 1. The semi-infinite integral in Eq. (52) and
those in Egs. (73) and (74) can be easily evaluated numerically using Filon’s method because the integrands
decay rapidly as the integration variable ¢ increases.

The Schmidt method has been applied to obtain the coefficients ¢, in Eq. (51) and d,, e, in Eq. (72),
truncating the infinite series to nine terms. It has been verified that the left-hand side of Eq. (51) coincides

Table 1
Elastic constants
Constants Steel Ceramics (Si3Nyg)
E,. (GPa) 205.9 304.8
Iy (GPa) 79.2 120.0
Vi 03 0.27
Vix 0.3x1.01 0.27x1.01
o (x1073/°C) 1.14 0.29
o, (x1075/°C) 1.14 0.29
k. [W/(m°C)] 48.6 15.5

k, [W/(m°C)] 48.6 15.5
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with the right hand side of Eq. (51). The same applies to Eq. (72). Namely, it can been seen that the
boundary conditions inside of the crack are completely satisfied.

It is assumed that the crack is situated on the mid-surface of the interfacial layer. Namely, the Hp/Hc
ratio is set to 1.0. In principle, the interfacial layer (A) with a thickness of (Hp + Hc) is divided into m
layers, although not necessarily of equal thickness. In the solution presented here, the layer (A) is assumed
to be divided into layers of equal thickness (Hg + Hc)/m.

The stress intensity factor K; is calculated for m =3,5,7 and Hp/a =0.1. Using the results for
m= 3,57, K, is approximated by the relation:

Ki /{Eqioav/ma" t/4} = ay(1/m)’ + ax(1/m)* + a3 (80)

where constants a;, a; and a3 can be easily determined. The stress intensity factor K, is also obtained in this
manner. The results of K; and K, are plotted with respect to 1/m in Fig. 6. Values for m > 9 are not
calculated numerically because these values can be inferred, and the curves for 1/m < 1/7 are shown by the
broken lines. The material properties are thought to vary continuously across the interfacial layer. This
layer can be replaced by an infinite number of infinitesimally thin layers. Therefore, the value for the in-
terfacial layer can be given by the values of the curves at 1/m — 0 in Fig. 6. Namely, a constant a; remains
important and it is the correct value of K;/{E . 01v/7a'>t/4}.

For Hg/a = 0.1, 0.2, 0.3, 0.4, 0.8, the stress intensity factors K; and K, are obtained in the same manner
described above and these are plotted with respect to Hg/a in Fig. 7. The Schmidt method cannot be
applied with sufficient accuracy to Hg/a < 0.1.

By experimental analysis, Erdogan and Sih (1963) verified that crack extension in brittle materials ini-
tiates in a plane perpendicular to the direction of the greatest tension. Thereby, the values Ky, are calculated
by substituting K; and K, into Eq. (79) for Hg/a = 0.1, 0.4, 0.8, and these are plotted versus 6 in Fig. 8.

1.5 , : . ; : ! ,

Hy;/a=H./a=0.1

0.5 _ ...................... ........ - K, .................... 4

(K KDNE @, o~Nr a'’tl4)

0 R R S
0 0.1 0.2 0.3 0.4
1/m

Fig. 6. Stress intensity factors K; and K, for Hg/a = 0.1 versus 1/m.
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H,la=H,la

(_Kl’ K2)/(Exxl axxl ‘\/-ﬂ'-— al.S 1/4)

i i

0 i

0 0.2 0.4 0.6 0.8
H,la
Fig. 7. Stress intensity factors K; and K, for ceramics—steel composites versus Hg/a.

].5 T ! T l: T !

180

Fig. 8. Stress intensity factor Ky versus 6 [°] for Hp/a(= Hc/a) = 0.8, 0.4, 0.1.
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6. Discussion

If a ceramics is joined with a steel by using a diffusion method, a thin diffusion layer appears between
these materials. Consider that the composites are used in high temperature environments. In this case, the
value of the stress intensity factor K; around an interface crack is negative, as shown in Fig. 7. This means
that 7,, near the crack tip is negative. In linear fracture mechanics, the shape of a crack is assumed to be a
thin ellipse. Then, the crack faces may approach each other but these do not come into contact because it is
assumed that the thickness of the crack is enough to avoid the contact.

It is considered that the diffusion layer is brittle. The maximum value of the stress intensity factor Ky
occurs at # = —85°. Then, it is very likely that the crack may extend at this direction when the value of Ky
reaches the fracture toughness value.

Appendix A

ay ap -+ ay-y by oayy - ap
ax ax tt aji—1 b2 arit] e a9
=) : /A (i=1,2,...,8,9) (A1)
agy asgy -+ asi-y bg agiy1 -+ agy
agy a9y -+ Aoy by agiy -+ dgy
with
4 :|aij| (i,j:1,2,...,8,9) (Az)
and

a1 =0, an=10, a3=0, a4=0, a5=0, a=0, a7=0, ag=0, ao9y=0 b =10
ay = —sinh(|¢|H, /ki), axn =0.0, a» =0, au = cosh(|¢H/k)

ays = sinh(|¢|H 1 /k3), ax =0, ay=0, ax=0, ay=0, by=-cosh(|¢H / k)
| = —cosh(|&|H, ki), a3 =0.0, a3 =0, asinsh(|¢|H/k;)

ays = cosh(|¢|H, /ks), a =0, a3 =0, ax=0, ay=0, b;=sinh(|¢H / k)
an =0, ap=0, a3 =0, ay=—cosh(||H;/k;), ass=—sinh(|¢|H;/k;)

axs =0, ay7=0, ag=—exp(—|l|Hs3/ks), aw=0, by=0

ass=0, a5 =0, as3=0, asy=—sinh(|¢|H3/ks), ass =—cosh(|¢|Hs/ks)

ass =0, as;=0, asy=-exp(—[¢|H3/ks), as=0, bs=0

agy =0, ag = cosh(—|E|Ha/ky), ae =sinh(—|E|Hy/ky), ags =0, ag =0

ags = — cosh(—|E|Hy/ky), agy = —sinh(—|E|Hy/ky), aes =0, ag =0, bs=0
an =0, ap =sinh(—|EH,/ky), a; =cosh(—|E|Hy/ky), aq=0, a;s=0

aze = — sinh(—|E|Hy /ky), a7 = —cosh(—|E|Hy k), a =0, ap=0, b;=0
agr =0, ap =0, ap =0, aga =0, ags=0, ag =cosh(—|¢|Hs/ks)

ag; = sinh(—|¢|Hy/ky), ags =0, ag = —exp(—|E|Hy/ks), bs=0

an =0, a5 =0, an =0, ayu=0, ays=0, ay=sinh(—|EHy/ks)

ay; = cosh(—|E|Hy/ky), aog =0, agy = —exp(—|E|Hs/ks), b =0

a

[

(A.3)
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Appendix B

! ! ! / ! /

I T L P | blj Ay 7 Ay
! ! ! / ! !

ay  ay o ayy by ay, e dygg
. 1 . .

gi=| : 4 (i=1,2,...,17,18) (j =1,2,3)

A ! ! / ! /

aypp Qi o Ay b17j Azipr 7 i
/ ! ! ! ! /

gy Aigp T Qg b18j Aigivr "7 Q81

with
A = |a;€,} (k,1=1,2,...,17,18)
and
aj; =0, dy=—0mé+ Omyoa, d3=0, a,=0m— 0mynon
ais =0, dyg=0mé— 0minon, d;=0, dg=0, ay=0, a,,=0
ay, =0, d, =0, d3=0, daj,=0, a5=0, a,,=0, d;=0
ayg =0, b, =0, by =01~ Omiyou
bis = fi(O[Quifit + Qi for [kt — o] = f3(E)[Q1oafi2 + Qo fn [ — B
dy = Qee1 (021 + Eya1),  ayy =0, dy = —0Oee2(0ti2 + Cy1y),  doy =0
dys = —Qee2(002 + E1pp),  ay =0, ay =0, ay=0, ay=0 d5,=0
dy =0, ay, =0, ay;=0, a5, =0, dy5=0, dys=0, ;=0
by =0, Dby = =0t (1 +Epyy), by =0
by = —[Qee1 (f11/kr — fa1) + f2(&) Os6a (f12/ k2 — f2)]1€] /&
dy = =[O0 &+ Omiyyom]sinh(ay Hy),  ayy = —[=0121& + Oniypy 0] cosh(ay Hy)
dyy =0, dy =0, a;3=0, dy=0, ay=[-0m+ Onsy;30us]sinh(osH,)
dyy = [~ 01238 + Omsyiz0us] cosh(osHy),  dyy = [—0123E + 0223753003 sinh (o3 Hy )
dyg = [ 0123¢ + Omaypzoms] cosh(ansHy),  ayy =0, a3, =0, ay; =0, iy, =0
dys =0, daye=0, a3;,=0, dy3=0

by = [0 & + Ouiyyom] sinh(ay Hy), b5y = [—0121& + Oy o1] cosh(o Hy)
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by = [Quafis + Omsfaz/ks — Pl fa(&) sinh(|E|H) /ks) + f5(E) cosh(|E|H /k3)]
— [Quifit + Onifor [kt — Bysl[sinh(|E|Hy /ky) + f1(E) cosh([E|H [k )]

dy = Qee1 (a1 + Eyyy) cosh(on Hy),  ayy = Oes1 (021 + Eyyy) sinh (o Hy)

dp=0, d,=0, ds=0, a=0, a,; =013+ &p;)cosh(oH))
aﬁ;g = Qee3 (13 + &yy3) sinh (o3 H ), af49 = Qee3 (023 + &,3) cosh (o3 H))

ayo = Qes3(023 + &ppy) sinh(an3 ), dfy; =0, ay, =0, a;=0, da,;,=0
a:us =0, a:tl6 =0, a:m =0, bius =0, bin = Qgs1 (o1 + &pyy) cosh(a Hy)
by = Qg (0ot + &pyy) sinh (o Hy)

by = = QO3 (f13/ks — f23)(|€]/ ) fa(S) cosh([E[H /ks) + f5(C) sinh(|¢|H) /k3)
+ Qo1 (11 /ki = f21)([€]/ ) [cosh([E|H /ki) + f1(C) sinh([E[H1 /K1)

ds, = —sinh(ay H,), a5, = —cosh(aHy), a5, =0, a5y =0, dsx=0, as=
dy; = sinh(a3H,),  asy = cosh(azHy),  ayy = sinh(onsH,),  as, = cosh(osH))
as; =0, a5, =0, d5;=0, ds, =0, da55=0, a5,=0, a5;=0

a’518 = 07 b/51 = Sil’lh(CleHl), blsz = COSh(OCllHl)

bs; = —[fa(&) sinh(|E|H, /ks) + f5(&) cosh(|E|Hy /k3)] f13/€
+ [sinh(|¢|H, /ki) + f1(&) cosh(|E|H, ki) fi1 /&

Cl’61 = —Y2 COSh(OQlH]), agz = —Yn SiHh(O(z]Hl), 0/63 = 07 ag4 =0
dgs =0, dy =0, dy; =y cosh(azHy), ag =7y3sinh(o3H;)

ag = V3 cosh(onzHy),  agy = 7y sinh(osHy), dg, =0, ag, =0
ag3 =0, ag, =0, ags=0, age=0, a5, =0, ag;=0

b/61 =1 COSh(O!]lHl), b/62 =" sinh(oc“Hl)

by = [f5(&) sinh([&[H /ks) + fa(&) cosh(|S|Hy /ks)]fas /<]
= [Ai(¢) sinh([E|H1 /ki) + cosh(|C|H, ki) fa /€]

dy =0, a5 =0, a53=0, dpy=0, a;5=0, a3 =
ar; = — (=€ + 713013003) sinh (o3 H3),  ahg = —(—EQ123 + 7130130223) cosh(o3H3)

dhg = —(—E0123 + 723023023 sinh (023 H3)
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ang = —(—E0m3 + 7230230m3) cosh(ap3 ), a7, =0, a5, =0, a5, =0
ang =0, s = (—E0mns + 71501502s) exp(—asH)
g5 = (—EQs + 7250050ns) exp(—onsHs),  dy; =0, =0, b5, =0, b,=0

bly = (O1asfis + Ons frs ks — Pas) f3(E) exp(—|E|Hs [ks) — (O123f13 + O3 fo3/ks — Pos)
x [f4(&) sinh(|E|H3 /k3) + f5(&) cosh(|E|H3 /ks)]

dgy =0, ag, =0, ag; =0, agy =0, ai=0, dagx=0

ag; = —Qee3 (013 + &y13) cosh(azHs),  dgg = — 063 (013 + &yy3) sinh(o3H3)

dyy = —Qe63(023 + &ya3) cosh (o3 i), agg = — Qo3 (023 + £ya3) sinh (a3 Hs)

dgy =0, dg, =0, dg3=0, a5,=0, agys=—0es(ous + &)15) exp(—ousHs)
dyjq = —Qess (%25 + Cyp5) eXp(—oshls), dg; =0, dgg =0, by =0, by =0

bgy = Qees(fis/ks — fas) exp(—|E|H3 /ks)[E] /& + Qo3 (f13/ks — f23)
x [fa(&) cosh(|E|H /ks) + f5(&) sinh([E|H /ks)][E]/&

dyy =0, dyy =0, a3 =0, dyy =0, dos=0, ay=0, ay=—sinh(w;3H;)
dog = —cosh(o3H;), dyy = —sinh(anHs), dgy = — cosh(aHs), dg; =0

gy =0, ag3=0, gy =0, ags5=exp(—oust), dys=exp(—oasHs)

dyy; =0, dyg =0, by =0, by =0

by = —fs(&)/1s exp(—[E[H3/ks) /¢ + [fa(&) sinh(|E|Hs /ks) + f5(&) cosh(|<|H /ks )] fi3 /¢

! _ A _ ! _ A _ ! _ / _
ajp =0, dipp =0, a3, =0, ay, =0, djps=0, djo=0

! A : !
dyy = =71z cosh(azfs),  djgg = —pp3sinh(azfs),  djgg = —7,3 cosh(o3H3)
/ o . / o ’ _ / o / _
djog = —Yaasinh(asts), @y =0, djg, =0, djp3 =0, aj,=0
! _ ! . ! _ ! .
digis = =15 €Xp(—ousts),  digq = —Vas €Xp(—0asts), djp; =0, @jo =0

bl101 =0, blloz =0

Blos = —/5(&) exp(—[&|H3/ks) fos /|| — [fs(&) sinh (€[ H3 /ks) + fa(&) cosh(|€[Hs /k3)] a3/ |<]

diy; =0, a,=0, dj;=(-0m+ 0myou)sinh(—apH,)
a1y = (0128 + 02227 150142) cosh(—o2 )

dyys = (—01m& + 02272,00) sinh(—0, H5)
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dys = (—01& + 09m72,022) cosh(—anH,)

ay; =0, dyy=0, apy=0, dj;,=0

dyyyy = —(—0124& + Oroay14014) sinh(—ou4Hy)

a1 = —(—0124& + O24)14014) cOSh(—0u4H>)

a1 = —(—0124E + O04724004) sinh(—any Hy)

dy11a = —(—0124E + 024724024) cosh(—04H>)

ayys =0, dje=0, d;=0, a,3=0, by, =0, b,=0

bi13 = (Qinafiz + Omfor /o — PBr)[f2(E) sinh(—[E|Ha /ka) + f3(€) cosh(—|E|Ha / k)]
— (Ouaf1a + Onafou/ks — Pos)f6(&) sinh(—|E|Ha /ka) + f7(&) cosh(—[E|Ha /ka)]

dyy =0, dp =0, dyy = Oser(12 + &yyp) cosh(—a2f)

a5y = Ooca (012 + Eyyy) sinh(—anHs),  d'ys = Oeea (022 + Epyy) cOsh(—anHy)

dyps = Qo2 (022 + &) sinh(—omth),  djyy =0, ajpg =0, a1 =0, djp=0
dipy = —Oeea(0t14 + Ep14) cOSh(—aiaHy), i1y = —Qesa(214 + Epyy) sinh(—oyHy)
dyy13 = —Qoea (024 + Eyp4) cOSh(—0aHD),  dypyy = — QD64 (0024 + E1ay) sinh(—0024H>)
dipis =0, dipe =0, dp; =0, diyg=0, by =0, bl =0

byy = =062 (f12/k2 — f22)[f2(E) cosh(—|E|Ha /ka) + f3(E) sinh(—|E|Ha /k2)][E] /€
+ Ooca(f1a/ks — f24)[f6(&) cosh(—|E|H, [ks) + f7(E) sinh(—|E|H, /k4)]|E] /&

diy; =0, d3, =0, d; =sinh(—oapH,), d)y, = cosh(—apH,)

a’135 = Sil’lh(—Osz[‘[z)7 a'136 = COSh(—OszI‘Iz)7 a,137 = 07 a'138 = 0, a'139 =0

di30 =0, a3y = sinh(—ouath), a3y = cosh(—oathy), a3 = sinh(—opf))

i3y = c0sh(—oouth), diy5=0, d35=0, dj5,=0, da33=0, b}, =0, b3, =0

b33 = —fulf2(&) sinh(—|E|Ha /ky) + f3(&) cosh(—[E|Ha/ k)] /€
+ fialf6(&) sinh(—[E|Ha /kq) + f7(E) cosh(—|E|Ha/ks)] /€

r_ r_ r_ r_ :

dyy =0, ayy =0, day3 =ypcosh(—oth),  dyyy =7y sinh(—upth)
/ /! : /! /

dyys = Y COsh(—unth),  dyyg =y sinh(—unth), iy =0, aj =0

! _ ! _ !/ _ ! _ b
dyg =0, dyyyo =0, dyyyy =—pgcosh(—auth), dyy, = —y4sinh(—oufh)
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A3 = —Vas cOSh(—0aafh), iy = —7as Sinh(—0afh),  dlys =0
! / ! / /
Ao =0, dyy; =0, diyg =0, Dby =0, by =0

Blys = flf3(&) sinh(—[E[Ha/ky) + f2(S) cosh(—[E[Ha/ k)] /[¢]
— Sl f7(C) sinh(—[E[Ha/ka) + f6(E) cosh(—|E|Ha /ka)] /[<]

dis; =0, di5,=0, di53=0, di5,=0, diss=0, di54=0, a}s5;,=0
disg =0, disy=0, aj50=0, dj5; = (=012 + 0r4714014) sinh(—ou1aHs)
dis;, = (—0124& + 024y 14014) cosh(—a4Hy)

dis13 = (—0124& + 0224724004) sinh(—ot4Hy)

dis14 = (—0124& 4 On4724004) cosh (o4 Hy)

dis;s =0, dis6 =0, dis;; = —(—Qi6 + OneYisttic) eXp(—otiHa)

disis = —(—0126¢ + Or6726026) €Xp(—0a6Hs), bl =0, bls, =0

b3 = (Qaafia + Onafaa/ka — Pou)[fs(&) sinh(—|E|Hy /ky) + f7(&) cosh(—|E[Hy/ky)]
— (Ou26f16 + On6f26/ k6 — Pas) fo(E) exp(—|E|Ha/ke)

ay =0, di =0, a3 =0, dig=0 a;=0 dgg=0 agz;=0
aig =0, digg =0, digo=0, djg = Ooea(ot1a + C714) cosh(—aiaHy)

dy61, = Qeea (0014 + &y1g) sinh(—oaHy),  dg; = Oesa(04 + Eypy) cosh(—oyHy)
dgs = Qooa (024 + £72g) sinh(—o4Hy),  ajgys =0, djge =0, djg; =0
digg =0, Dl =0, b =0

biss = —Qesa(f1a/ka — f2)fs(&) cosh(—[E|Ha/ka) + f7(&) sinh(—[E|Ha/ka)]|E] /€
+ Qees (f16/ke — fr6)fo(E) exp(—|E|Ha/ks)|E] /€

din =0, ap =0, d;3=0, a5,=0, dj;5=0, daje=0, dj;;=0

dizg =0, di3g=0, di5,=0, d\5, =sinh(—oH,), d\5, = cosh(—uHy)

dygi3 = sinh(—oHs),  dygyy = cosh(—muHs),  dyp5=0, djpe=0

dyg; =0, di5=0, by =—exp(—ougHs), by = —exp(—uHs)

blgs = —fualfs(&) sinh(—|E|Ha/ks) + f7(E) cosh(—|E[Ha/ka)] /€ + frefo (&) exp(—|E|Ha/ke) /<

! _ A _ ! _ ! _ ! _ ! _ / _
aig =0, digy =0, da53=0, ay=0, dgs=0, dg=0 azu=0
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r r / o ' _ / . . _

digg =0, digy =0, aj5,=0, djg =7 4c08h(—asty), a5, =74 sinh(—on4Hy)
! _ ! _ : ! _ /! _

Aig13 = V2a COSh(—0004Hy), gy, = Vou SINW(—02aHy), digs =0, dig=0
! . ! . / . / .

ag17 = 0, aig1g — 0, b1g1 = 7V16exp(*al6H4)a b182 = Y2 exp(*a%H‘*)v

bigs = faul7(&) sinh(—[E|Ha/ka) + f6(&) cosh(—[E|Ha/ka)/|E] = faafo(E) exp(—[E[Ha ko) /I<] (B.3)

Appendix C

01(&) = (lamy — Ismy) /A", 0x(&) = (Limy — Lomy) /A"
Q3( ) = {[(1315 + 1612)}’}’[1 — (1314 —|— lﬁll)mﬂ/ﬁﬁ —|— mg} (C 1)
04(&) = (Ismy — Lyms) /A", Os(&) = (lomg — lyms) /A" '
06(&) = {[(I31s + Lsl)ms — (1315 + Iglo)ma] /A" + me}

with
mi = g21(—0121& + 0201751021),
my = (—011€ + Qo y01) + 82(—0121E + On1721021),
my = —g3(—0121& + O y21021) + f1(E) (O fir + Onifor [kt — Bar), (C.2)
my = Oger[(o11 + Ev11) + guoar + Epa1)],  ms = Osa1€12(021 + Eva1),
me = Qgs1(g13 (021 + &yyy) + (f11/kr — f1)[E]/E
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